CDTC: Freight Advisory Committee

DRAFT MEETING NOTES
August 18, 2021, 9:00 AM
Virtual - Zoom Meeting

Attendees
Julia Amaral Rensselaer Polytechnic Institute
Pete Bardunias Capital Region Chamber
Peter Comenzo Town of Rotterdam
Valerie Deane NYSDOT Region 1
Bob Doyle Price Chopper/Market 32
Jeffrey Gritsavage NYS Canal Corporation
Kendra Hems Trucking Association of New York
José Holguín-Veras Rensselaer Polytechnic Institute
Steve Iachetta Albany International Airport
Mike Izdebski Plug Power
Brian Kirch NYSDOT Region 1
Andrew Kreshik City of Troy
Catherine Lawson University at Albany
Gautam Mani FHWA
Kate Maynard Capital District Regional Planning Commission
Susan Olsen NYSDOT Region 1
David Rosenberg NYSDOT
John Scavo Town of Clifton Park
Josh Tocci Capital District Regional Planning Commission
Chris Wallin City of Schenectady
Jeffrey Wojtowicz Rensselaer Polytechnic Institute
Adam Yagelski Town of East Greenbush
Chris Bauer Capital District Transportation Committee
Sandy Misiewicz Capital District Transportation Committee
Glenn Posca Capital District Transportation Committee
Andrew Tracy Capital District Transportation Committee
1. Welcome and Introductions

Chris Bauer began the meeting at 9:00 AM with a review of the meeting agenda. Chris also introduced Sandy Misiewicz, CDTC’s new Executive Director.

2. Energy Efficient Logistics Project: Update and Pilot Initiatives (Dr. José Holguín-Veras, Rensselaer Polytechnic Institute)

Dr. José Holguín-Veras gave a briefing on the “Collaborative Approaches to Foster Energy-Efficient Logistics (EEL) in the Albany-New York City Corridor” project and the upcoming Pilot Tests. The project seeks to gain insight into the best ways to induce stakeholders to adopt energy-efficient technologies and operations. The project has also produced several analytical tools for decision-makers, including a Guidebook to Foster Energy-Efficient Logistics.

Several decision-support tools have been developed as part of the project including the Energy Efficiency Framework, the Initiative Selector, Computational Systems to Compute Generalized Costs and Emissions Using Archival GPS data, the Freight and Service Trips Generation Software (FASTGS), and Behavioral Micro-simulation the assess impact of policies.

José led a discussion about the potential Pilot Tests, the next phase of the project. The project team will be conducting small Pilot Tests of novel operational concepts. The Pilot Tests should be of interest to the stakeholders involved, with the potential to benefit all involved if fully implemented, and should not require large investments in time or money. Some potential ideas for Pilot Tests are the effects of changes in time-of-delivery, consolidation of orders (and deliveries) to reduce truck traffic, and the effects of restrictions on tandems, the installation of shared use delivery lockers, and the segregation of service and freight vehicles to better manage the curbside.

Pilot Tests will be mostly funded by the project, and most of the work will be completed by the project team. Anyone with an idea for the Pilot Test is encouraged to contact José Holguín-Veras at jhv@rpi.edu or Jeffrey Wojtowicz at wojtoj@rpi.edu.

Adam Yagelski inquired about the offset of trips and deliveries as a result of more utilization of e-commerce. José said the products are being shipped in more, smaller shipments compared to the past. Peter Bardunias noted that the trend of increased e-commerce deliveries is not good for local brick-and-mortar retail businesses and smaller vehicles are less efficient than larger vehicles for delivering freight. José said RPI could give a presentation on the impacts of e-commerce at a future meeting.

Chris Wallin noted the increasing efficiency of all vehicles and inquired about the impacts of emissions and congestion from freight. Chris suggested that we should consider which priorities will have a greater impact in the future. Sandy noted it will likely take some time to completely turn over the vehicle fleet to electric; however, it is also important to manage demand for deliveries. Steve Iachetta noted there have been advancements in cleaner fuels and the electrification of aviation equipment.

Please see attached presentation for more details.

3. Data Collection Services (Andrew Tracy, CDTC)

Andrew Tracy gave an update on the data collection services project. CDTC recently awarded a contract to a consultant to collect traffic volume, speed, and classification data. CDTC is collecting counts in
locations where previous data may be outdated, including COVID impacts, and to support planning studies. There will also be counts in locations where there has been new development and on the Freight Priority Network. Data collection will be in the Fall. Andrew said members can submit suggested count locations via email to him or Chris.

José noted that a large portion of freight moves in smaller vehicles, and large trucks are often a smaller than expected portion of all freight movement. The committee discussed ways to include counts on roadways to/from Amsterdam, to account for traffic from the new distribution centers in that area. There is a potential to add new counts at the terminus of I-890 and on NY 5.

4. Regional Truck Parking Study (Chris Bauer, CDTC)

Chris Bauer ran through the timeline for the project selection. At the February 17 meeting, the Freight Advisory Committee recommended the Regional Truck Parking Study or the Local Delivery Optimization projects to the Planning Committee. The Planning Committee Selected the Regional Truck Parking Study at their April 7 meeting.

CDTC staff developed a Request for Expressions of Interest (REI) with a Scope-of-Work, which was released May 19, and due on June 23. CDTC received 3 letters of interest and convened a consultant selection committee consisting of NYSDOT R1, NYSTA, CDRPC, and CDTC. The project is currently in the consultant selection process. The next steps, after contracting, will be to convene a Study Advisory Committee. The consultant will provide regular updates at Freight Advisory Committee meetings.

Kendra Hems (TANY) suggested considering the needs for future alternative fueling locations, including electrification, as part of the project. Mike Izdebski noted that hydrogen fuel cell technology is also advancing.

5. TIP Project Solicitation (Chris Bauer, CDTC)

Chris gave an overview of the potential upcoming Transportation Improvement Program (TIP) solicitation, pending Policy Board approval, later this year. The TIP is a fiscally constrained list of the next 5 years of transportation projects.

Chris gave an overview of the solicitation process. Eligible project sponsors submit candidate projects. CDTC staff evaluates and scores projects, including a Benefit/Cost ratio and Merit Score. The Planning Committee reviews the project scores and makes project recommendations to the Policy Board. The Policy Board officially approves the TIP.

The Freight Advisory Committee’s roles include reviewing candidate projects and providing input as it relates to Freight and Goods Movement. The FAC can also be allowed to review draft Freight merit scores. Chris displayed the rubric for calculating the scores. Chris said the FAC can also suggest ways to participate.

CDTC may change the November FAC meeting date to December/January to accommodate the process.

6. Discussion – Member Updates

- Airport – Steve Iachetta (Albany County International Airport) said air freight tonnage has been steadily increasing since 2019. Steve noted passenger travel growth is flat, and the passenger companies continue to carry belly freight, which does not get accounted for in the air cargo data.
• Trucking – Kendra Hems (TANY) gave a briefing on the recent “The Future is Now” Clean Transportation Initiatives Workshop, hosted by TANY. The workshop had sessions on clean fuels and technologies. There were also OEMs on hand with heavy-duty electric vehicles on site.

• Other Private Industry (manufacturing, distribution, warehousing, etc.) – Bob Doyle (Price Chopper/Market 32) said some facilities are not able to provide staffing during off-hours, and have had to eliminate second and/or third shifts. The labor shortage has affected the entire supply chain and the manufacturing sector. There continue to be driver shortages, too.

• Institutional/Government/Non-profit – Pete Bardunias (Capital Region Chamber) said he is interested in the increased utilization of waterways using solar technology. Pete also inquired about some confusing signage along/near state routes.

7. Next Meeting

Remaining 2021 Freight Advisory Committee Meeting Date: November 17th

All meetings will begin at 9:00 AM unless otherwise specified.

8. Adjourn

The meeting was adjourned at approximately 10:25 AM.
Today’s Agenda

1. Welcome
2. Energy Efficient Logistics Project: Update and Pilot Initiatives (Dr. José Holguín-Veras, Rensselaer Polytechnic Institute)
3. Data Collection Services (Andrew Tracy, CDTC)
4. Regional Truck Parking Study (Chris Bauer, CDTC)
5. Clean Cities TIP Solicitation Update
6. Member Updates
 i. Airport
 ii. Marine
 iii. Rail
 iv. Trucking
 v. Other Private Industry (manufacturing, distribution, warehousing, etc.)
 vi. Institutional/Government/Non-profit
Briefing on “Collaborative Approaches to Foster Energy-Efficient Logistics (EEL) in the Albany-New York City Corridor” and Pilot Tests

José Holguín-Veras
William H. Hart Professor
Director of the VREF Center of Excellence for Sustainable Urban Freight Systems, Rensselaer Polytechnic Institute
August 18th, 2021

Outline of Presentation

- Project Overview
 - Objectives
 - Project Products
 - Energy Efficiency Framework
 - Computational Systems to Estimate Generalized Costs and Emissions
 - Freight and Service Trips Generation Software (FASTGS)
 - Behavioral Micro-Simulation for EEL (BMS-EEL)
 - Catalog of Energy Efficient Initiatives and Initiative Selector
 - Behavioral Research: How to Mitigate Ecommerce Traffic
- Discussion about Pilot Tests
Objectives, Approach, and Barriers Addressed

- **Objectives:**
 - Foster adoption of Energy Efficiency Logistics (EEL)
 - Gain insight into best ways to induce stakeholders to adopt energy efficient Technologies and Operations
 - Provide decision-makers with analytical tools

- **Approach:**
 - Changes in behavior increase efficiency allowing to achieve better solutions

- **Barriers addressed:**
 - Lack of tradition of cooperation among stakeholders
 - Lack of analytical models to predict how changes in supply chain’s behavior impact energy consumption

Overall Concept

- Identify combination of strategies, both supply and demand side, that complement and reinforce each other; and use them in combination to foster adoption of EELs

- **Supply Side Tech/Ops:**
 - Electric trucks (E-trucks)
 - Eco-transfer areas
 - E-trucks → E-bikes
 - Multi-use dynamic lanes
 - Dynamic parking allocation
 - Truck platooning
 - Autonomous trucks
 - Crowd deliveries, etc.

- **Demand Side Initiatives:**
 - Off-Hour Deliveries, Staggered deliveries, etc.
 - Change shipment sizes
 - Reduce frequency
 - Change destination
 - Consolidation, etc.

- **Collaborative initiatives**
Example of Synergy Between Initiatives

- Off-hour deliveries (OHD) and electric vehicles

 - **OHD** allows carriers to use vehicles in double duty (day and night) and avoid congestion, making them more financially viable
 - **Electric vehicles** reduce energy consumption and minimize externalities (noise, pollution)
 - OHD fosters use of electric vehicles
 - Electric vehicles facilitate implementation of OHD

Tests on Living Lab

- **Living Lab: Albany-NYC corridor**
 - The Albany-NYC corridor is a **unique corridor** with water transport, rail, highways, toll facilities, anchored by the Port Authority of NY and NJ’s complex and the Port of Albany.
 - The corridor will be used to:
 - Assess baseline conditions
 - Measure energy consumption
 - Test energy efficient initiatives
 - Gain insight to foster implementation in other corridors
Project Products

- A Guidebook To Foster Energy Efficient Logistic
- Decision-Support Tools
 - Energy Efficiency Framework
 - Initiative Selector
 - Computational Systems to Compute Generalized Costs and Emissions Using Archival GPS data
 - Freight and Service Trips Generation Software (FASTGS)
 - Behavioral Micro-simulation the assess impact of policies

Project Accomplishments To Date
Traditionally three factors have been acknowledged as the determinants of energy efficiency:
- Total travel activity: total VMT
- Modal share
- Modal energy intensity: average consumption of energy by type of vehicle

However, the traditional framework misses key factors that ought to be considered in logistics:
- The role of the agents—customers, public sector agencies, real estate sector, shippers, carriers, and receivers—that make decisions that impact supply chains must be considered

The team designed a new energy efficiency framework that considers the unique aspects of logistics.
Energy Efficiency Sources traditionally considered

Sources of Energy Efficiency

Spatial Economic Factors:
- Geographic distribution of economic activities
- Spatial patterns of freight production / consumption
- Volumes of freight produced / consumed
- Types of commodities

Spatial Economic Factors:
- Geographic distribution of modal networks
- Rates, door-to-door travel times, reliability, frequency of service, quality of service

Establishment-Level Factors:
- Size and market power
- Location
- Logistical practices
- Temporal patterns of shipments and deliveries
- Urgency of deliveries

Network-Level Factors:
- Geographical distribution of modal networks
- Rates, door-to-door travel times, reliability, frequency of service, quality of service

Traffic, Vehicle-Miles Traveled, Load Factors

Freight Mode / Vehicle Choice Process

Routing

Mode Shares

Energy Efficiency Sources traditionally considered

Vehicle Efficiency

Traffic Management Practices

Traffic Dynamics and Congestion Patterns

Energy Efficiency and Consumption Patterns

Traffic Dynamics and Congestion Patterns

Example of Demand Efficiency CO₂: Regular Hours vs. Off-Hours

The truck traveled an extra 16 miles to avoid congestion

Regular Hours Delivery Truck #3

Off-Hours Delivery Truck #1

12
Emission and Cost Reductions

<table>
<thead>
<tr>
<th>City\Pollutant</th>
<th>ROG</th>
<th>TOG</th>
<th>CO</th>
<th>CO2</th>
<th>NOX</th>
<th>PM10</th>
<th>PM25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bogotá</td>
<td>13.49%</td>
<td>13.49%</td>
<td>13.50%</td>
<td>13.12%</td>
<td>12.70%</td>
<td>13.41%</td>
<td>13.41%</td>
</tr>
<tr>
<td>New York City</td>
<td>67.17%</td>
<td>67.17%</td>
<td>67.00%</td>
<td>55.14%</td>
<td>59.47%</td>
<td>65.53%</td>
<td>65.53%</td>
</tr>
<tr>
<td>Sao Paulo</td>
<td>49.98%</td>
<td>49.98%</td>
<td>51.43%</td>
<td>42.52%</td>
<td>44.64%</td>
<td>45.90%</td>
<td>45.90%</td>
</tr>
</tbody>
</table>

Partial OHD (6PM to 10PM)

Full OHD (7PM to 6AM)

In addition, cost reductions in the range of 30-55%.

Computational Systems to Estimate Generalized Costs and Emissions
Overview of Archival GPS Data

- GPS data from ATRI
 - 105 million points, 116,042 vehicles
 - Three different time periods:
 - July 16-27 (2018)
 - October 22-Nov 2 (2018)
 - June 3-14 (2019)

- Challenges:
 - Polling interval ranges 1-5 minutes (one second or lower is desired)
 - The team developed imputation techniques to obtain second-by-second speeds using the 1Hz GPS data collected by the team

<table>
<thead>
<tr>
<th>Geographical Areas</th>
<th>Albany</th>
<th>Corridor</th>
<th>NYC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Points</td>
<td>128,011,520</td>
<td>184,614,494</td>
<td>843,016,100</td>
</tr>
<tr>
<td>Average Speed (mph)</td>
<td>40.38</td>
<td>46.66</td>
<td>25.64</td>
</tr>
<tr>
<td>Fuel Consumption (gallons/100 miles)</td>
<td>11.15</td>
<td>11.03</td>
<td>12.50</td>
</tr>
<tr>
<td>CO</td>
<td>0.14</td>
<td>0.13</td>
<td>0.25</td>
</tr>
<tr>
<td>CO₂</td>
<td>1238.68</td>
<td>1225.20</td>
<td>1389.30</td>
</tr>
<tr>
<td>NOx</td>
<td>1.24</td>
<td>1.17</td>
<td>1.89</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>0.0131</td>
<td>0.0136</td>
<td>0.0099</td>
</tr>
<tr>
<td>PM₂.⁵</td>
<td>0.0137</td>
<td>0.0142</td>
<td>0.0104</td>
</tr>
<tr>
<td>ROG</td>
<td>0.0149</td>
<td>0.0146</td>
<td>0.0194</td>
</tr>
<tr>
<td>TOG</td>
<td>0.0169</td>
<td>0.0166</td>
<td>0.0221</td>
</tr>
<tr>
<td>Cost (US$/mile)</td>
<td>1.74</td>
<td>1.58</td>
<td>2.40</td>
</tr>
</tbody>
</table>

Aggregate Metrics of Emissions and Fuel Consumption

The corridor is the best in terms of fuel consumption and emissions, Albany comes in second, and NYC is the worst.

Results obtained using all datasets (Jul/2018, Oct/2018, Jun/2019)
Example of Rasters (July/2018)

- Data points are aggregate based on the location and the time stamp
- Sample results for every hour of a typical business day in the NYC MSA
 - Computed from data on Tuesdays, Wednesdays and Thursdays from the July/2018 dataset

Aggregate Metrics Including a Temporal Dimension

- Data points are aggregate based on the location and the time stamp
- Sample results for every hour of a typical business day in the NYC MSA
 - Computed from data on Tuesdays, Wednesdays and Thursdays from the July/2018 dataset

NYC MSA Typical Business Day

<table>
<thead>
<tr>
<th>Time</th>
<th>Avg Speed (mph)</th>
<th>Fuel Consump. (gal/100 miles)</th>
<th>CO2 emissions (g/mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 AM</td>
<td>34.74</td>
<td>11.30</td>
<td>1256</td>
</tr>
<tr>
<td>1 AM</td>
<td>34.73</td>
<td>11.32</td>
<td>1258</td>
</tr>
<tr>
<td>2 AM</td>
<td>35.42</td>
<td>11.27</td>
<td>1253</td>
</tr>
<tr>
<td>3 AM</td>
<td>35.51</td>
<td>11.22</td>
<td>1247</td>
</tr>
<tr>
<td>4 AM</td>
<td>35.15</td>
<td>11.25</td>
<td>1250</td>
</tr>
<tr>
<td>5 AM</td>
<td>34.51</td>
<td>11.42</td>
<td>1269</td>
</tr>
<tr>
<td>6 AM</td>
<td>27.97</td>
<td>12.18</td>
<td>1252</td>
</tr>
<tr>
<td>7 AM</td>
<td>23.20</td>
<td>12.95</td>
<td>1439</td>
</tr>
<tr>
<td>8 AM</td>
<td>21.82</td>
<td>13.27</td>
<td>1474</td>
</tr>
<tr>
<td>9 AM</td>
<td>23.23</td>
<td>12.98</td>
<td>1440</td>
</tr>
<tr>
<td>10 AM</td>
<td>23.24</td>
<td>12.66</td>
<td>1407</td>
</tr>
<tr>
<td>11 AM</td>
<td>23.87</td>
<td>12.67</td>
<td>1403</td>
</tr>
<tr>
<td>Noon</td>
<td>24.00</td>
<td>12.85</td>
<td>1417</td>
</tr>
<tr>
<td>1 PM</td>
<td>23.70</td>
<td>13.26</td>
<td>1447</td>
</tr>
<tr>
<td>2 PM</td>
<td>23.96</td>
<td>13.76</td>
<td>1508</td>
</tr>
<tr>
<td>3 PM</td>
<td>21.96</td>
<td>13.95</td>
<td>1481</td>
</tr>
<tr>
<td>4 PM</td>
<td>20.71</td>
<td>13.33</td>
<td>1368</td>
</tr>
<tr>
<td>5 PM</td>
<td>24.04</td>
<td>12.31</td>
<td>1299</td>
</tr>
<tr>
<td>6 PM</td>
<td>27.92</td>
<td>11.69</td>
<td>1276</td>
</tr>
<tr>
<td>7 PM</td>
<td>32.25</td>
<td>11.49</td>
<td>1250</td>
</tr>
<tr>
<td>8 PM</td>
<td>32.57</td>
<td>11.61</td>
<td>1274</td>
</tr>
<tr>
<td>9 PM</td>
<td>32.06</td>
<td>11.47</td>
<td>1274</td>
</tr>
<tr>
<td>10 PM</td>
<td>33.14</td>
<td>11.47</td>
<td>1274</td>
</tr>
</tbody>
</table>

NYC
Speed (mph)
- 0 - 10
- 10 - 20
- 20 - 40
- 30 - 40
- >40

NYC
CO2 (g/mile)
- 1000 - 1500
- 1500 - 2000
- 2000 - 2500
- 2500 - 3000
- 3000 - 3500

Fuel Consump. (gal/100 miles)
- 0
- 5
- 10
- 15
- 20
- 25
- 30
- 35
- 40

Avg. Speed (mph)
- 0
- 5
- 10
- 15
- 20
- 25
- 30
- 35
- 40

CO2 Emissions (g/mile)
- 0
- 200
- 400
- 600
- 800
- 1000
- 1200
- 1400
- 1600
Performance Metrics by Time of Day

- Data points are aggregate based on the location and the time stamp
- Sample results for every hour of a typical business day in the Albany MSA
 - Computed from data on Tuesdays, Wednesdays and Thursdays from the July/2018 dataset

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Avg. Geschwindigkeit (mph)</th>
<th>Kraftstoffverbrauch (gal./100 miles)</th>
<th>CO2 Emissionen (g/mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 AM</td>
<td>44.08</td>
<td>10.97</td>
<td>1219</td>
</tr>
<tr>
<td>1 AM</td>
<td>39.12</td>
<td>11.12</td>
<td>1235</td>
</tr>
<tr>
<td>2 AM</td>
<td>40.42</td>
<td>10.91</td>
<td>1212</td>
</tr>
<tr>
<td>3 AM</td>
<td>40.60</td>
<td>10.89</td>
<td>1210</td>
</tr>
<tr>
<td>4 AM</td>
<td>37.90</td>
<td>11.14</td>
<td>1237</td>
</tr>
<tr>
<td>5 AM</td>
<td>37.14</td>
<td>11.02</td>
<td>1224</td>
</tr>
<tr>
<td>6 AM</td>
<td>38.31</td>
<td>11.19</td>
<td>1244</td>
</tr>
<tr>
<td>7 AM</td>
<td>38.70</td>
<td>11.16</td>
<td>1244</td>
</tr>
<tr>
<td>8 AM</td>
<td>38.92</td>
<td>11.10</td>
<td>1240</td>
</tr>
<tr>
<td>9 AM</td>
<td>38.59</td>
<td>11.24</td>
<td>1233</td>
</tr>
<tr>
<td>10 AM</td>
<td>40.29</td>
<td>11.18</td>
<td>1243</td>
</tr>
<tr>
<td>11 AM</td>
<td>40.09</td>
<td>11.20</td>
<td>1244</td>
</tr>
<tr>
<td>Noon</td>
<td>38.64</td>
<td>11.19</td>
<td>1254</td>
</tr>
<tr>
<td>1 PM</td>
<td>38.99</td>
<td>11.30</td>
<td>1256</td>
</tr>
<tr>
<td>2 PM</td>
<td>40.29</td>
<td>11.28</td>
<td>1261</td>
</tr>
<tr>
<td>3 PM</td>
<td>40.09</td>
<td>11.30</td>
<td>1224</td>
</tr>
<tr>
<td>4 PM</td>
<td>38.64</td>
<td>11.29</td>
<td>1229</td>
</tr>
<tr>
<td>5 PM</td>
<td>38.99</td>
<td>11.35</td>
<td>1216</td>
</tr>
<tr>
<td>6 PM</td>
<td>40.29</td>
<td>11.06</td>
<td>1214</td>
</tr>
<tr>
<td>7 PM</td>
<td>40.09</td>
<td>10.94</td>
<td>1212</td>
</tr>
</tbody>
</table>

Aggregate Metrics by Time of Day

- Data points are aggregate based on the location and the time stamp
- Sample results for every hour of a typical business day
 - Computed from data on Tuesdays, Wednesdays and Thursdays from the July/2018 dataset

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Avg. Geschwindigkeit (mph)</th>
<th>Kraftstoffverbrauch (gal./100 miles)</th>
<th>CO2 Emissionen (g/mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 AM</td>
<td>44.08</td>
<td>10.97</td>
<td>1219</td>
</tr>
<tr>
<td>1 AM</td>
<td>39.12</td>
<td>11.12</td>
<td>1235</td>
</tr>
<tr>
<td>2 AM</td>
<td>40.42</td>
<td>10.91</td>
<td>1212</td>
</tr>
<tr>
<td>3 AM</td>
<td>40.60</td>
<td>10.89</td>
<td>1210</td>
</tr>
<tr>
<td>4 AM</td>
<td>37.90</td>
<td>11.14</td>
<td>1237</td>
</tr>
<tr>
<td>5 AM</td>
<td>37.14</td>
<td>11.02</td>
<td>1224</td>
</tr>
<tr>
<td>6 AM</td>
<td>38.31</td>
<td>11.19</td>
<td>1244</td>
</tr>
<tr>
<td>7 AM</td>
<td>38.70</td>
<td>11.16</td>
<td>1244</td>
</tr>
<tr>
<td>8 AM</td>
<td>38.92</td>
<td>11.10</td>
<td>1240</td>
</tr>
<tr>
<td>9 AM</td>
<td>38.59</td>
<td>11.24</td>
<td>1233</td>
</tr>
<tr>
<td>10 AM</td>
<td>40.29</td>
<td>11.18</td>
<td>1243</td>
</tr>
<tr>
<td>11 AM</td>
<td>40.09</td>
<td>11.20</td>
<td>1244</td>
</tr>
<tr>
<td>Noon</td>
<td>38.64</td>
<td>11.19</td>
<td>1254</td>
</tr>
<tr>
<td>1 PM</td>
<td>38.99</td>
<td>11.30</td>
<td>1256</td>
</tr>
<tr>
<td>2 PM</td>
<td>40.29</td>
<td>11.28</td>
<td>1261</td>
</tr>
<tr>
<td>3 PM</td>
<td>40.09</td>
<td>11.30</td>
<td>1224</td>
</tr>
<tr>
<td>4 PM</td>
<td>38.64</td>
<td>11.29</td>
<td>1229</td>
</tr>
<tr>
<td>5 PM</td>
<td>38.99</td>
<td>11.35</td>
<td>1216</td>
</tr>
<tr>
<td>6 PM</td>
<td>40.29</td>
<td>11.06</td>
<td>1214</td>
</tr>
<tr>
<td>7 PM</td>
<td>40.09</td>
<td>10.94</td>
<td>1212</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Kraftstoffverbrauch (gal./100 miles)</th>
<th>CO2 Emissionen (g/mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 AM</td>
<td>10.60</td>
<td>1219</td>
</tr>
<tr>
<td>1 AM</td>
<td>10.70</td>
<td>1235</td>
</tr>
<tr>
<td>2 AM</td>
<td>10.80</td>
<td>1212</td>
</tr>
<tr>
<td>3 AM</td>
<td>10.90</td>
<td>1210</td>
</tr>
<tr>
<td>4 AM</td>
<td>11.00</td>
<td>1237</td>
</tr>
<tr>
<td>5 AM</td>
<td>11.10</td>
<td>1224</td>
</tr>
<tr>
<td>6 AM</td>
<td>11.20</td>
<td>1244</td>
</tr>
<tr>
<td>7 AM</td>
<td>11.30</td>
<td>1244</td>
</tr>
<tr>
<td>8 AM</td>
<td>11.40</td>
<td>1240</td>
</tr>
<tr>
<td>9 AM</td>
<td>11.50</td>
<td>1233</td>
</tr>
<tr>
<td>10 AM</td>
<td>11.60</td>
<td>1243</td>
</tr>
<tr>
<td>11 AM</td>
<td>11.70</td>
<td>1244</td>
</tr>
<tr>
<td>Noon</td>
<td>11.80</td>
<td>1243</td>
</tr>
<tr>
<td>1 PM</td>
<td>11.90</td>
<td>1254</td>
</tr>
<tr>
<td>2 PM</td>
<td>12.00</td>
<td>1243</td>
</tr>
<tr>
<td>3 PM</td>
<td>12.10</td>
<td>1254</td>
</tr>
<tr>
<td>4 PM</td>
<td>12.20</td>
<td>1261</td>
</tr>
<tr>
<td>5 PM</td>
<td>12.30</td>
<td>1224</td>
</tr>
<tr>
<td>6 PM</td>
<td>12.40</td>
<td>1229</td>
</tr>
<tr>
<td>7 PM</td>
<td>12.50</td>
<td>1234</td>
</tr>
<tr>
<td>8 PM</td>
<td>12.60</td>
<td>1226</td>
</tr>
<tr>
<td>9 PM</td>
<td>12.70</td>
<td>1238</td>
</tr>
<tr>
<td>10 PM</td>
<td>12.80</td>
<td>1229</td>
</tr>
<tr>
<td>11 PM</td>
<td>12.90</td>
<td>1234</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>CO2 Emissionen (g/mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 AM</td>
<td>10.60</td>
</tr>
<tr>
<td>1 AM</td>
<td>10.70</td>
</tr>
<tr>
<td>2 AM</td>
<td>10.80</td>
</tr>
<tr>
<td>3 AM</td>
<td>10.90</td>
</tr>
<tr>
<td>4 AM</td>
<td>11.00</td>
</tr>
<tr>
<td>5 AM</td>
<td>11.10</td>
</tr>
<tr>
<td>6 AM</td>
<td>11.20</td>
</tr>
<tr>
<td>7 AM</td>
<td>11.30</td>
</tr>
<tr>
<td>8 AM</td>
<td>11.40</td>
</tr>
<tr>
<td>9 AM</td>
<td>11.50</td>
</tr>
<tr>
<td>10 AM</td>
<td>11.60</td>
</tr>
<tr>
<td>11 AM</td>
<td>11.70</td>
</tr>
<tr>
<td>Noon</td>
<td>11.80</td>
</tr>
<tr>
<td>1 PM</td>
<td>11.90</td>
</tr>
<tr>
<td>2 PM</td>
<td>12.00</td>
</tr>
<tr>
<td>3 PM</td>
<td>12.10</td>
</tr>
<tr>
<td>4 PM</td>
<td>12.20</td>
</tr>
<tr>
<td>5 PM</td>
<td>12.30</td>
</tr>
<tr>
<td>6 PM</td>
<td>12.40</td>
</tr>
<tr>
<td>7 PM</td>
<td>12.50</td>
</tr>
<tr>
<td>8 PM</td>
<td>12.60</td>
</tr>
<tr>
<td>9 PM</td>
<td>12.70</td>
</tr>
<tr>
<td>10 PM</td>
<td>12.80</td>
</tr>
<tr>
<td>11 PM</td>
<td>12.90</td>
</tr>
</tbody>
</table>
Objective: investigate the impacts of extending/shifting port work hours to reduce emissions and fuel consumption.

Archival GPS data were post-processed to impute second-by-second measurements, to compute second-by-second emissions.

Three periods were considered based on the working hours of the port:
1) 3am-6am
2) 6am-6pm
3) 6pm-9pm

Area considered
Port of NY and NJ: Emissions and Fuel Consumption Rates

<table>
<thead>
<tr>
<th>PerIODS OF THE DAY</th>
<th>3am-6am</th>
<th>6am-6pm</th>
<th>6pm-9pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Speed (mph)</td>
<td>25.95</td>
<td>18.57</td>
<td>22.71</td>
</tr>
<tr>
<td>Fuel Consumption (gal. / 100 miles)</td>
<td>11.95</td>
<td>13.58</td>
<td>13.06</td>
</tr>
<tr>
<td>CO (g / mile)</td>
<td>0.21</td>
<td>0.32</td>
<td>0.28</td>
</tr>
<tr>
<td>CO2 (g / mile)</td>
<td>1327.33</td>
<td>1508.42</td>
<td>1450.80</td>
</tr>
<tr>
<td>NOX (g / mile)</td>
<td>1.65</td>
<td>2.40</td>
<td>2.17</td>
</tr>
<tr>
<td>PM2.5 (g / mile)</td>
<td>0.0106</td>
<td>0.0078</td>
<td>0.0084</td>
</tr>
<tr>
<td>PM10 (g / mile)</td>
<td>0.0110</td>
<td>0.0082</td>
<td>0.0088</td>
</tr>
<tr>
<td>ROG (g / mile)</td>
<td>0.0174</td>
<td>0.0228</td>
<td>0.0207</td>
</tr>
<tr>
<td>TOG (g / mile)</td>
<td>0.0198</td>
<td>0.0260</td>
<td>0.0236</td>
</tr>
</tbody>
</table>

Behavioral Micro-Simulation for EEL (BMS-EEL)
Behavioral Micro-Simulation (BMS-EEL)

- Objective: Assess impacts of EEL initiatives under simulated conditions
- Approach: Simulate all the tours required for delivering supplies to commercial establishments
 - With the delivery tours it is possible to estimate emissions, costs, VMT
- Tours are simulated based on:
 - Employment, Freight Trip Generation
 - Statistics about delivery stops
 - Economic interconnections among industry sectors (extracted from BEA’s Input-Output models)

Progress: Construction of the Delivery Tours by the BMS

Inputs:
- Number of delivery stops per tour by industry sector
- Number of deliveries per ZIP code
- Interaction between the shipper and the receivers
- Travel time from ZIP code of shipper to ZIP code of receivers

For every shipment:
- Define number of receivers to be included in the tour based on industry sector of the shipper
- Compute probabilities of including receivers in the tour
- Select receivers based on probabilities
- Compute sequence of delivery stops
- Delivery Tour
Behavioral Micro-Simulation (BMS-EEL)

The BMS-EEL simulates the flows at the various stages of supply chains to analyze effectiveness of EEL initiatives.

- **Gateways**
- **Large Manufacturers**
- **Large Distributors**
- **Large Receivers**
- **Small Manufacturers**
- **Small Distributors**
- **Small Receivers**
- **Households**

(Preliminary) Impacts of the Location of DCs

- **Three scenarios simulated:**
 - **Scenario 1:** Adding a DC in Colonie
 - Closer to city center
 - Central position in the Capital District
 - Easier to reach receivers, a bit more expensive
 - **Scenario 2:** Adding a DC in Amsterdam
 - Outskirts of the area
 - Easier to build
 - **Scenario 3:** Relocating a DC from Amsterdam to Colonie
Freight Trip Generation

Simulated Freight Flows
FTG Scenarios and Results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>FTG in Amsterdam</th>
<th>FTG in Colonie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional DC in Amsterdam</td>
<td>Baseline + (160, 260)</td>
<td>Baseline</td>
</tr>
<tr>
<td>Additional DC in Colonie</td>
<td>Baseline</td>
<td>Baseline + (160, 260)</td>
</tr>
<tr>
<td>Relocation of DC from Amsterdam to Colonie</td>
<td>Baseline - (160, 260)</td>
<td>Baseline + (160, 260)</td>
</tr>
</tbody>
</table>

Modeling Delivery Tours in Troy

Establishments were grouped by street segment
Examples of Tours

Small to Small Estab.
Shipper: NAICS 31

Small to Small Estab.
Shipper: NAICS 32

From Gateway to Establishments

Catalog of Energy Efficient Initiatives and Initiative Selector

Please give it a try at: https://cite.rpi.edu/iselector/
Catalog of Initiatives

- Initiatives characterized based on:
 - Qualitative Assessment of Overall Energy Efficiency Impact
 - Sources of Energy Efficiency: Vehicle, Routing, Driving,…
 - Geographic Scope: Nation, State, City, Area…
 - Coverage: Corridor or Urban
 - Expected Cost: Low, Medium, High
 - Implementation Time: Short, Medium, Large
 - Benefits Timeframe (years): <1, 1-5, 6-10…
 - Stakeholders Involved
 - Supporting Technologies
 - Assessment of Impacts and Remedial Actions
 - Examples

Initiative Selector: Basic Concept

- To provide suggestions on potential Freight and Land Use Initiatives, that could help solve or mitigate Land Use and Freight Issues
- Inspired on the one developed for NCFRP Report 33

Please give it a try at: https://cite.rpi.edu/iselector/
Once you specify the issue(s), you get suggestions...

Not fully functional yet

Please give it a try at: https://cite.rpi.edu/iselector/

Develop a Freight-Efficient Land Use (FELU) Plan

Description: A FELU plan integrates freight activity considerations into a land-use plan so that potential negative impacts from freight activities can be identified at an early stage of planning. The plan can be implemented in advance. Addressing logistics and land use through comprehensive planning will improve the efficiency of freight activity and allow land use to be harmonized for all economic sectors while minimizing costs due to externalities caused by freight transportation.

Simulates the freight activity in the study area:

Geographic Scope: City, Area, Corridor

Geographic approach:

- City: Area
- Area: Corridor
- Corridor: Study Area

Geographic approach: City, Area, Corridor

Geo-located infrastructure, All traffic, Urban deliveries, Double parking, Other parking issues, Sidewalk conflicts, Incompatible land use

Problem source: Inadequate infrastructure, All traffic, Urban deliveries, Double parking, Other parking issues, Sidewalk conflicts, Incompatible land use

Expected costs and level of effort: The main effort to develop a FELU plan is to engage stakeholders, since the costs of developing the plan are low. However, the cost of implementing a land-use plan fluctuates depending on the geographic area. Commonly, land costs in urban areas are considerably high. These larger upfront investments of the public sector are balanced with the significant reduction of externalities such as VMT or emissions. High levels of effort and coordination among all stakeholders are required to accurately and effectively plan for logistic land uses.

Stakeholders involved: Local Communities, Producers, Suppliers, Department of Transportation, Regional Planning Agencies, Planning Commission

Time to fruition: 6-10 years

Advantages:

- Organizes freight land development
- Increases employment opportunities
- Decreases costs for goods and services
- Beneficial to local economy
- Improves community livability

Examples:

- Paris, France: Three regional plans were developed and reserved areas for freight infrastructure and re-development in the metropolitan region. This allows the interaction between logistic intensive land uses and the rest of land uses. (Dublais, 2015)
- Melbourne, Australia: AFreight District is Bradford, Oregon. The district designates a corridor or a subarea that can be used to align and integrate infrastructure with local and regional networks. (Dublais, 2015)

Related land use initiatives: All land use initiatives

Complementary transportation initiatives: All transportation initiatives

References: (Federal Highway Administration, 2012b; Dublais, 2015)

Street Traffic: Allocating space for logistics facilities and stock locations. Concomitantly to the use of roads to allow large vehicles to serve the needs, logistics-related activities, issues due to freight transportation.

Main group: Long-term Planning: Strategic

Logistics facilities, свойство to control the activities and logistics activities, in particular, it might be necessary some for the private firms that work to be willing to relocate to fit in the city center. Still, the cost of operations will increase.

Advantages:

- Higher developer costs
- Potential exposure to local residents
- May result in increased urban congestion

Economic capacity: Logistics facilities into the city. The Inner Harbor in Odessa, 2017. In addition, there has been a rise in Europe as a result of the European Union. As an example, we can observe a large-scale competition. A private initiative is shown using a fleet of delivery trucks.
Behavioral Research: How to Mitigate Ecommerce Traffic

Long-Term View of Freight Trip Generation in NYC

[Diagram showing FTG/person-day with data points for 1963, 2009, and 2017 for Household (Internet Deliveries) and Commercial trips.]
1st Round: 2019 Household Internet Survey

- To gain insight about most promising energy efficient initiatives in household deliveries
- 507 complete responses:
 - Results weighted to account for demographic discrepancies
 - Average 10.26 online shopping orders/month and 5.25 deliveries/month
 - 9.61 online shopping orders/month and 5.17 deliveries/month
- Five demand management initiatives evaluated:
 - Delivery lockers
 - Delivery to workplace
 - Delivery consolidation
 - Night delivery
 - Crowd delivery

Households’ Acceptance of Demand Management Initiatives

<table>
<thead>
<tr>
<th>Initiatives</th>
<th>Extremely Unlikely</th>
<th>Unlikely</th>
<th>Neutral</th>
<th>Likely</th>
<th>Extremely Likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery Lockers</td>
<td>15.8%</td>
<td>12.8%</td>
<td></td>
<td></td>
<td>20.1%</td>
</tr>
<tr>
<td>Delivery Consolidation</td>
<td>13.9%</td>
<td>16.2%</td>
<td></td>
<td></td>
<td>20.7%</td>
</tr>
<tr>
<td>Night Delivery</td>
<td>22.6%</td>
<td>18.4%</td>
<td></td>
<td></td>
<td>25.6%</td>
</tr>
<tr>
<td>Crowd Delivery</td>
<td>18.2%</td>
<td>15.4%</td>
<td></td>
<td></td>
<td>20.1%</td>
</tr>
<tr>
<td>Workplace Delivery</td>
<td>15.4%</td>
<td>16.4%</td>
<td></td>
<td></td>
<td>29.1%</td>
</tr>
</tbody>
</table>
Discussion About Pilot Tests

Role of Pilot Tests

- Small Pilot Tests of novel operational concepts are part of the project
 - Delayed by the COVID-19 pandemic
- Ideally, the Pilot Tests:
 - Should be of interest to the stakeholders involved, with potential to benefit all involved if fully implemented
 - If you have freight/logistical issues that you want to solve, let’s talk.
 - Should not require large investments in time or money
- Benefits to participants
 - May find solutions to issues that affect them
 - Raise awareness about these issues
 - Good PR...
Potential Ideas

- In collaboration with private sector
 - Pilot test the effects of changes in time-of-delivery, such as staggering (spreading) the deliveries across the day
 - Consolidate orders (and deliveries) to distribution centers, large buildings, commercial centers, etc. to reduce truck traffic
 - Quantify the effects of restrictions on tandems to identify potential solutions

- In collaboration with the public sector
 - Pilot test the installation of shared use delivery lockers
 - Segregation of service and freight vehicles to better manage the curbside

- Of, course all ideas are more than welcomed!

Roles

- The US DoE project would fund RPI’s participation
 - We will, in collaboration with partners, do the field work, design, and analyses of the data
 - There is a tiny amount of funds to defer some expenses, with DoE approval
 - We will do the bulk of the work

- Any suggestions about potential pilot tests? Email us:
 - José Holguín-Veras, jhv@rpi.edu
 - Jeffrey Wojtowicz, wojtoj@rpi.edu
Delivery Lockers

- Delivery lockers are secure compartments where consumers can have parcels delivered in public locations
- They are suitable for small- to medium-sized non-perishable items
- These lockers are typically free for consumers to use and are often located at convenience stores, grocery stores, or public facilities
- Delivery lockers remove the chance of failed deliveries and reduce the number of individual stops required to deliver parcels, reducing vehicle miles traveled, congestion and emissions
Delivery Consolidation

- Delivery consolidation is a strategy where multiple deliveries to a single destination are consolidated into a single delivery.
- Consolidation may be done by the shipper, such as with Amazon’s “Amazon Day” program, or at an intermediate location where packages from multiple shippers can be consolidated.
- Delivery consolidation reduces the number of freight trips, reducing the total vehicle miles traveled.

Off-hours or Night Delivery

- Off-hour delivery or night delivery is a strategy that items are delivered to homes outside of regular business hours.
- The idea is to deliver items when receivers are likely to be home and able to accept deliveries, thus greatly reducing the likelihood of a failed delivery or porch piracy.
- At off-hours, roads are less congested and there is less competition for commercial vehicle parking, thus increasing delivery efficiency by reducing tour time, and potentially allowing for more deliveries in a tour.
Workplace Delivery

- Workplace delivery is an alternative delivery strategy in which consumers have items delivered to their place of work instead of their residences.
- As many parcel carriers operate during regular business hours, receivers are often not at their homes when deliveries are made. By delivering to places of work, carriers can ensure that receivers obtain their items, reducing the likelihood of failed deliveries.
- Delivering at the workplace potentially reduces the number of delivery stops, since the carriers can deliver multiple parcels at a large office building instead of delivering in each recipient's home.

Segregation of Parking Spaces

- This initiative aims to allocate dedicated parking spaces for freight vehicles and dedicated parking spaces for service vehicles.
- The mean occupation time of service vehicles is 88.69 minutes, while the mean occupation time of freight vehicles is only 15.66 minutes.
- By segregating the parking spaces for freight and service vehicles, the availability of parking for freight vehicles increases.
- Traffic in general is benefited as the externalities produced by double parking and cruising for parking decrease.
2. Energy Efficient Logistics Project: Update and Pilot Initiatives

Dr. José Holguín-Veras, Rensselaer Polytechnic Institute

https://cite.rpi.edu/energy-efficient-logistics/
4. Regional Truck Parking Study Update

- February 17 - Freight Advisory Committee
 - Recommended *Regional Truck Parking Study* or *Local Delivery Optimization* to Planning Committee

- April 7 - Planning Committee
 - Selected the *Regional Truck Parking Study*

- Request for Expressions of Interest (REI) with Scope-of-Work
 - Released May 19 due June 23

4. Regional Truck Parking Study

- Received 3 letter of interest
- Convened a consultant selection committee:
 - NYSDOT R1, NYSTA, CDRPC, and CDTC
- Current: consultant selection process
- Next Steps: Contracting > **Convene Study Advisory Committee** (Fall)
- Regular updates at Freight Advisory Committee meetings
5. TIP Solicitation

- Transportation Improvement Program (TIP) – a fiscally constrained list of the next 5 years of transportation projects
- Release of solicitation pending Policy Board approval
- Fall timeline (Sept. to Dec.)
- Process:
 - Eligible project sponsors submit candidate projects
 - Staff evaluation and scoring
 - Benefit/Cost ratio and Merit Score (inc. Freight)
 - Planning Committee makes project recommendations to the Policy Board > Policy Board officially approves

Potential Freight Advisory Committee Role:

- Review candidate projects and provide input as it relates to Freight and Goods Movement
- Review draft Freight merit scores
- Other roles for the Freight Advisory Committee?
- Could change November meeting date to December/January
FREIGHT (5 POINTS POSSIBLE)

Freight and Goods Movement (5 points)

Award 1 point for each of these criteria (for a cumulative total of up to 5 maximum):

• Project improves a MPO or NYSDOT identified freight movement issue.
• Project removes/substantially improves a freight related land-use compatibility, noise, or safety issue.
• Project is located on, or provides access to, the CDTC Freight Priority Network, and provides a travel time and/or reliability benefit(s).
• Project enhances access to a key freight generator (Ex: Airport, Ports, Major Distribution Centers, Industrial Park/cluster of industrial land uses).
• Project enhances access to any intermodal freight movement (Ex: air to truck/rail, rail to truck/water, water to rail/truck/air, etc.).

Project has neutral effect (no known impact, positive or negative) on freight and goods movement.

Project is located on, or provides access to, the CDTC Freight Priority Network, and increases travel time and/or decreases reliability.

Project negatively affects freight movement or safety in an area with a known MPO or NYSDOT identified freight movement or freight-related safety issue; alternatively, project introduces a specifically freight-related land use incompatibility (e.g., substantial increase to freight traffic load in residential area, introduction of significant freight traffic noise or other significant freight related nuisance).

FREIGHT SUBTOTAL SCORE

6. Member Updates

i. Airport
ii. Marine
iii. Rail
iv. Trucking
v. Other Private Industry (manufacturing, distribution, warehousing, etc.)
vi. Institutional/Government/Non-profit
7. Next Meeting

- Remaining 2021 Freight Advisory Committee Dates
 - November 17*
- Still virtual for the time being

* Subject to change to accommodate TIP process

Thank you for attending!

Christian P. Bauer, AICP
Senior Transportation Planner
Capital District Transportation Committee
(518) 458-2161
cbauer@cdtcmpo.org