Bicycle Railing Heights

(Everything you wanted to know about design guidelines but were afraid to ask)

Scott Lewendon
Rob Leslie
Clough Harbour & Associates

Problem Statement

- Recommended railing height was 54 inches raised numerous complaints:
 - Sight obstruction
 - High cost
 - Aesthetics
- 1999 AASHTO Guidelines for Bicycle Facilities recommends ("should") 42 inch height
- AASHTO Guidelines for Bridges requires ("shall") 54 inch height

National Cooperative Highway Research Program (NCHRP)

- Basis for Heights
- Literature Search
- Preference Survey
- Investigate Accidents
- Recommendations

History

The Survey

- Internet based
 - State DOT Bicycle Coordinators and Structural Engineers
 - Advocacy Groups
 - APBP
- Height Preference and Why?
- Issues related to railing height?
- Knowledge of accident records?
- Knowledge of specific accidents?

Survey Findings

- 43% of advocacy groups prefer a
 1.1-meter (42-inch) railing height.
- 46% of state bicycle coordinators and bridge designers prefer a 1.1meter (42- inch) railing height.
- Remainder evenly divided between 54" and "other"

Height Issues

- Obstructs viewshed
- Obstructs sight distance
- Aesthetics of a trail or bridge
- Creates a feeling of confinement
 - No escape from an assault
- Greater expense
- Sense of safety
 - Falling
 - Strong cross winds

Obstruction of View

Eye Height vs. Railing Height

	Average Eye Level Height (in.)	Difference from 42" rail (in.)	Difference from 54" rail (in.)
Adult Male	65.4	23.4	11.4
Adult Female	61.5	19.5	7.5
Child - 12 yrs.	54.5	12.5	0.5

Cost (per meter)

- Bicycle Railing
 - Pipe railing \$110 to \$150
 - Wood Railing \$63 to \$70
 - Chain Link Fence \$55
- Vehicular Railing
 - Vehicular Railing \$270
 - Vehicular/Pedestrian Railing \$350
 - Vehicular/Bicycle Railing \$475

Crash Experience

CountryLocation			Height Description
•/	U.S. Roadway Bridge over	<1.1 m	Bicyclist hit by overtaking vehicle and fell railing
†	U.S. Roadway Bridge	<1.1 m	Bicyclist fell over bridge vehicular railing. (Cause unknown)
-	G.B. Roadway Bridge	<1.1 m	Bicyclist veered off course due to slippery surface and fell over railing
-	U.S. Roadway Bridge who	N/A	Motor vehicle collided with two bicyclists were thrown over railing
-	U.S. Roadway Bridge	1m+/-	Collided with obstruction and fell over railing
-	U.S. Shared use path	1.4 m	Bicyclist traveling too fast lost control
	while and vaulted over		turning into curve, collided with railing
	G.B. Shared use path	N/A	Single vehicle incident. Details unknown
-\	Can. Shared use path on bridg collide with railing)		Bicyclist traveling too fast collided with bridge structure (did not
•	Can. Shared-use Path into on bridge	None	Bicyclist collided with pedestrian and fell path of motor vehicle traffic

Bicycle Railing Crash Lessons Learned

- Greatest threat Low vehicular railings on bridges
- Most crashes occurring on roadway bridges or shared use paths on bridges
- Bicycle accident surveillance systems do not record road conditions
- One crash related to vaulting over a 54 inch railing

Wyoming Vehicular Railing

Bicycle Railing Crash Theory

Bicyclist Center of Gravity

David Orr – Texas A&M University

Bicyclist Center of Gravity

David Orr - Texas A&M University

1.2 Meter (48 inch) High Railing

- Bicycle facility immediately adjacent to the edge of a highway bridge.
- Where a bicyclist may fall over a railing into the path of oncoming traffic.
- A bikeway bridge with a drop off of 0.6 meters (2 feet) or greater
- A shared use path adjacent to a hazard where the bicyclist would could be severely injured

1.4 Meter (54 inch) High Railing

- On a shared use path or the approach to a bridge where the radius of a curve adjacent to a hazard is not adequate for the anticipated speed.
- On a shared use path where inadequate sight distance or large volume of users could cause a bicyclist to take evasive action and collide with a railing at a sharp angle.
- On a shared use path or bridge at the end of a long descent where speeds of bicyclists are greater.

Higher Railing Needed

Transparency

Railing Setback

Cantilevered Top Rail

Lessons Learned

- In a litigious society, guidelines are dictating design
- Guidelines are often based on best judgment at the time – not science
- Guidelines are guidelines, not standards
- Deviation from guidelines should be documented
- Good design requires flexibility
- Use experienced professionals