Federal Street Corridor Study Final Appendices February 2023 Prepared for: By: Appendix A – Environmental Justice & Environmental Mitigation Appendix B – PEL Questionnaire Appendix C – Traffic Volumes Appendix D – Level of Service Calculations Appendix E – Cost Estimates ### Appendix A Environmental Justice & Environmental Mitigation #### **Environmental Justice** #### Introduction Per federal requirements, the Capital District Transportation Committee (CDTC) undertakes an analysis of Environmental Justice in all Community and Transportation Linkage Planning Program (Linkage Program) initiatives to evaluate if transportation concepts and recommendations impact Environmental Justice populations. Impacts may be defined as those that are positive, potentially negative and neutral as described in CDTC's Environmental Justice Analysis document, dated March 2020. The goal of this analysis is to ensure that both the positive and negative impacts of transportation planning conducted by CDTC and its member agencies are fairly distributed and that defined Environmental Justice populations do not bear disproportionately high and adverse effects. This goal has been set to: - Ensure CDTC's compliance with Title VI of the Civil Rights Act of 1964, which states that "no person in the United States shall, on the ground of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance," - Assist the United State Department of Transportation's agencies in complying with Executive Order 12898 stating, "Each Federal agency shall make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations." - Address FTA C 4702.1B TITLE VI REQUIREMENTS AND GUIDELINES FOR FEDERAL TRANSIT ADMINISTRATION RECIPIENTS, which includes requirements for MPOs that are some form of a recipient of FTA, which CDTC is not. #### **Data and Analysis** CDTC staff created demographic parameters using data from the 2013-2017 American Community Survey (ACS). Threshold values were assigned at the census tract level to identify geographic areas with significant populations of minority or low-income persons. Tracts with higher than the regional average percentage of low-income or minority residents are identified as Environmental Justice populations. Minority residents are defined as those who identify themselves as anything but white only, not Hispanic or Latino. Low-income residents are defined as those whose household income falls below the poverty line. The transportation patterns by race/ethnicity, income, age, English ability, disability status, and sex in CDTC's planning area are depicted in table III-2 through III-7, using the commute to work as a proxy for all travel. The greatest difference between the defined minority and non-minority population is in the Drive Alone and Transit categories: The minority population is almost 20% less likely to drive alone, 11% more likely to take transit, and is also more likely to walk and carpool. The defined low-income population and the non-low-income population follow the same trend, with the low-income population 20% less likely to drive alone, 10% more likely to commute via transit, and more likely to walk and carpool. Other categories showed a lesser difference. **Table 1: Commute Mode by Race/Ethnicity** | By Race/Ethnicity | Drive Alone | Carpool | Transit | Other | Walk | Work at Home | |---------------------------------------|-------------|---------|---------|-------|------|--------------| | All Workers (16+) | 80.0% | 7.6% | 3.7% | 1.2% | 3.4% | 4.1% | | White Alone Not Hispanic or
Latino | 83.3% | 6.9% | 1.8% | 1.0% | 2.7% | 4.2% | | Minority | 63.8% | 11.0% | 12.9% | 2.0% | 7.0% | 3.3% | **Table 2: Commute Mode by Income** | By Income | Drive Alone | Carpool | Transit | Other | Walk | Work at Home | |-----------------------------|-------------|---------|---------|-------|------|--------------| | At/Above 100% Poverty Level | 81.8% | 7.4% | 3.2% | 1.1% | 2.6% | 3.9% | | Below 100% Poverty Level | 61.3% | 11.3% | 13.2% | 2.4% | 8.8% | 3.0% | **Table 3: Commute Mode By Age** | By Age | By Age Drive Alone Carpool Transit C | | | | | | | |-------------|--------------------------------------|------|------|------|-------|------|--| | 16-19 Years | ears 59.9% 16.2% 4.3% | | | | 13.0% | 3.8% | | | 20-64 Years | 80.8% | 7.4% | 3.7% | 1.1% | 3.1% | 3.9% | | | 65+ years | 80.7% | 5.0% | 2.9% | 1.3% | 2.5% | 7.6% | | **Table 4: Commute Mode by English Ability** | By English Ability | Drive Alone | Carpool | Transit | Other | Walk | Work at Home | |-----------------------------------|-------------|---------|---------|-------|------|--------------| | Speak English Very Well | 70.3% | 11.7% | 4.8% | 1.8% | 7.0% | 4.4% | | Speak English Less than Very Well | 65.6% | 14.3% | 8.3% | 1.2% | 7.4% | 3.2% | **Table 5: Commute Mode by Disability** | By Disability Status* | Drive Alone | Carpool | Transit | Other | Walk | Work at Home | |------------------------|-------------|---------|---------|-------|------|--------------| | Without any Disability | 80.7% | 7.4% | 3.5% | 1.1% | 3.4% | 4.0% | | With a Disability | 71.1% | 11.2% | 6.7% | 2.4% | 4.3% | 4.3% | **Table 6: Commute Mode by Sex** | By Sex* | Drive Alone | Carpool | Transit | Other | Walk | Work at Home | | |---------|-------------|---------|---------|-------|------|--------------|--| | Male | 80.1% | 7.5% | 3.4% | 1.5% | 3.7% | 3.9% | | | Female | 80.2% | 7.8% | 3.9% | 0.9% | 3.1% | 4.3% | | Data is from the American Community Survey 2017 5-year estimates, tables S0802, B08105H, B08101, B08122, S0801, B08113, and S1811. Other includes taxi, motorcycle, and bicycle. *Data for sex and disability status include all people in Albany, Rensselaer, Saratoga, and Schenectady Counties. Map 1 provides an overview of the Federal Street Corridor Study study area. The Federal Street Corridor Study study area is included in the Environmental Justice area based on the study area Census Tracts having a higher than regional average percentage of both minority and low income residents. Within CDTC's planning area in the Capital Region, 21.5% of residents are minority (race other than white only, and not Hispanic/Latino) and 12.5% are low income (below the poverty rate). The Capital Region Indicators website, maintained by the Capital District Regional Planning Commission (CDRPC), provides information by race and ethnicity (White, Black or African American, Asian, and Hispanic or Latino) that may be useful to further understand the population within a study area. Since this document is a regional analysis performed at the census tract level, small scale populations may be overlooked. It therefore may still be useful to scan the project area, particularly if the project area is small, as minority or low-income populations may form a significant portion of the study area residents but not be reflected in the larger census tract areas. In addition, the project should look for worksites and other generators where minority and/or low-income people are over-represented, as the data only captures the residential population. Consideration for including minority and low income populations in the planning process was given in the following ways: - The Internet was used to display and advertise information about the study. - Social media was used to provide information and input opportunities. - At the request of a neighborhood association in the study area, project partners joined a virtual neighborhood meeting to explain the project and answer questions. - Two formal public participation opportunities were held as online "Join at Your Own Pace" presentations. They were advertised with flyers distributed to businesses and residences near the study area, email blasts to over 2,000 emails addresses from Downtown Revitalization Initiative (DRI) and Troy Rehabilitation and Improvement Program (TRIP) databases, and a pressrelease. - Public comment was accepted throughout the study process, and directly requested via online surveys - Final products will be posted to CDTC's website, the City of Troy website and on social media. #### Conclusion CDTC defines plans and projects with a primary or significant focus on transit, bicycling, walking, or carpool as being "positive". The project evaluated a concept to reduce the number of vehicle lanes on Federal Street and provide space for a median, bicycle accommodations, on-street parking, and buffer space between the sidewalk and travel way. To accommodate these segment changes, the concept includes roundabouts at the Federal Street/River Street and Federal Street/6th Avenue intersections. The concept would result in a positive impact to environmental justice populations, through improved walking and bicycling accommodations, and reduced vehicle speeds. #### **Environmental Mitigation** #### Introduction Per federal requirements, the Capital District Transportation Committee (CDTC) undertakes an Environmental Features Scan in all Community and Transportation Linkage Planning Program (Linkage Program) initiatives. The Environmental Features Scan identifies the location of environmentally sensitive features, both natural and cultural in relation to project study areas. Although the conceptual planning stage is too early in the transportation planning process to identify specific potential impacts to environmentally sensitive features, the early identification of environmentally sensitive features is an important part of the environmental mitigation process. It should also be noted here that as specific projects advance through the project development process, the applicable NEPA and SEQRA regulations requiring
potential environmental impact identification, analysis and mitigation will be followed by the implementing agencies as required by federal and state law. CDTC is not an implementing agency. #### **Data and Analysis** CDTC staff relies on data from several state and federal agencies to maintain an updated map-based inventory of both natural and cultural resources. The following features are mapped and reviewed for their presence within each study area as well as within a quarter mile buffer of the defined study area boundary. - sole source aquifers - aquifers - reservoirs - water features (streams, lakes, rivers and ponds) - wetlands - watersheds - 100 year flood plains - rare animal populations - rare plant populations - significant ecological sites - significant ecological communities - state historic sites - national historic sites - national historic register districts - national historic register properties - federal parks and lands - state parks and forests - state unique areas - state wildlife management areas - county forests and preserves - municipal parks and lands - land trust sites - NYS DEC lands - Adirondack Park - agricultural districts - NY Protected Lands - natural community habitats - rare plant habitats - Class I & II soils Map 3 provides an overview of the environmentally sensitive (cultural and natural) features located within the Federal Street Corridor Study study area as well as within a quarter mile buffer of the defined study area boundary. #### Conclusion Within one-quarter mile of the study area there is a water feature (the Hudson River), a 500 year floodplain on Starbuck Island, National Register historic districts and properties, significant ecological communities/natural community habitat, rare animal habitat, 100 year floodplain, class I and II soils, and an aquifer. The project evaluated a concept to reduce the number of vehicle lanes on Federal Street and provide space for a median, bicycle accommodations, on-street parking, and buffer space between the sidewalk and travel way. To accommodate these segment changes, the concept includes roundabouts at the Federal Street/River Street and Federal Street/6th Avenue intersections. If implemented, the concept is expected to have minimal impact on the environmentally sensitive features in the study area. Construction of the build concept is likely to impact storm water collection. The roundabouts will result in an increase of the footprints of the intersections, although there may be an opportunity to incorporate pervious surfaces within them, and initial implementation of 1-lane roundabouts could reduce the anticipated footprint. In the short term, a reduction of emissions can be expected, however the sub-alternative for 1-lane roundabouts could cause additional vehicle idling with increased emissions. # Appendix B PEL Questionnaire | | 1. Backgrou | und: | | | | | | |---|---|--|--|--|--|--|--| | а | Who is the sponsor of the PEL study? (state DOT, Local Agency, Other) | City of Troy, CDTC | | | | | | | b | What is the name of the PEL study document and other identifying project information (e.g. sub-account or STIP numbers, long-range plan, or transportation improvement program years)? | Federal Street Corridor Study | | | | | | | c | Who was included on the study team (Name and title of agency representatives, consultants, etc.)? Provide a description of the existing transportation facility within the corridor, including project limits, modes, functional classification, number of lanes, shoulder width, access control and type of surrounding environment (urban vs. rural, residential vs. commercial, | Carrie Ward - CDTC Stephen Maples - CDTC Steve Strichman - City of Troy Andrew Kreshik - City of Troy Mark Sargent - Creighton Manning Jesse Vogl - Creighton Manning Jeff Pangburn - Creighton Manning Kristie DiCocco - Alta | | | | | | | e | etc.) Provide a brief chronology of the planning activities (PEL study) including the year(s) the studies were completed. | See report section 1.1 See report section 1.1 | | | | | | | f | Are there recent, current, or near future planning studies or projects in the vicinity? What is the relationship of this project to those studies/projects? | See report section 1.1 | | | | | | | | 2. Methodolog | ıy used: | | | | | | | а | What was the scope of the PEL study and the reason for completing it? | The purpose of the Federal Street Corridor Study is to facilitate and accelerate a future multi-modal transportation improvement project informing scoping, through the development of a Purpose and Need Statement, alternatives analysis, and stakeholder involvement. This study is formatted similar to a NYSDOT project scoping report to guide subsequent phases of project development including a future design report. The primary report sections include: 1.1 Introduction 1.2 Purpose and Need 1.3 What Alternatives are Being Considered? 1.4 How will the Alternatives Affect the Environment? 1.5 What are the Costs & Schedules? 1.6 Which Alternative is Preferred? 1.7 What are the Opportunities for Public Involvement? | | | | | | | b Did you use NEPA-like language? Why or why not? Yes, NEPA-like language was used to support future. The Federal Street Corridor Study is modeled on the terms included in the report shell provided by NYSI. How do you see these terms being used in NEPA documents? What were the key steps and coordination points in the PEL decision-making process? Who were the decision-makers and who else participated in those key steps? For example, for the corridor vision, the decision was made by state DOT and the local agency, with buy-in from FHWA, the USACE, and USFWS and other resource/regulatory agencies. The terms used in the Federal Street Corridor Study NEPA documents. The decision-maker for the Federal Street Corridor in consultation with CDTC, NYSDOT, CDTA, CDRPC, How should the PEL information be presented in NEPA? How the information, data collection, analyses and Federal Street Corridor Study are presented in NEPA. | | | | | | | | | |--|--|--|--|--|--|--|--|--| | What were the actual terms used and how did you define them? (Provide examples or list) How do you see these terms being used in NEPA documents? What were the key steps and coordination points in the PEL decision-making process? Who were the decision-makers and who else participated in those key steps? For example, for the corridor vision, the decision was made by state DOT and the local agency, with buy-in from FHWA, the USACE, and USFWS and other resource/regulatory agencies. The decision-maker for the Federal Street Corridor in consultation with CDTC, NYSDOT, CDTA, CDRPC, How should the PEL information be presented in NEPA? | re design report efforts. | | | | | | | | | terms included in the report shell provided by NYSI How do you see these terms being used in NEPA documents? What were the key steps and coordination points in the PEL decision-making process? Who were the decision-makers and who else participated in those key steps? For example, for the corridor vision, the decision was made by state DOT and the local agency, with buy-in from FHWA, the USACE, and USFWS and other resource/regulatory agencies. The decision-maker for the Federal Street Corridor in consultation with CDTC, NYSDOT, CDTA, CDRPC, How should the PEL information be presented in NEPA? How the
information, data collection, analyses and | ne NYSDOT PSR and uses | | | | | | | | | How do you see these terms being used in NEPA documents? What were the key steps and coordination points in the PEL decision-making process? Who were the decision-makers and who else participated in those key steps? For example, for the corridor vision, the decision was made by state DOT and the local agency, with buy-in from FHWA, the USACE, and USFWS and other resource/regulatory agencies. The decision-maker for the Federal Street Corridor in consultation with CDTC, NYSDOT, CDTA, CDRPC, How should the PEL information be presented in NEPA? | | | | | | | | | | What were the key steps and coordination points in the PEL decision-making process? Who were the decision-makers and who else participated in those key steps? For example, for the corridor vision, the decision was made by state DOT and the local agency, with buy-in from FHWA, the USACE, and USFWS and other resource/regulatory agencies. The decision-maker for the Federal Street Corridor in consultation with CDTC, NYSDOT, CDTA, CDRPC, How should the PEL information be presented in NEPA? | ly will support future | | | | | | | | | Who were the decision-makers and who else participated in those key steps? For example, for the corridor vision, the decision was made by state DOT and the local agency, with buy-in from FHWA, the USACE, and USFWS and other resource/regulatory agencies. The decision-maker for the Federal Street Corridor in consultation with CDTC, NYSDOT, CDTA, CDRPC, How should the PEL information be presented in NEPA? | | | | | | | | | | It How should the PEL information be presented in NEPA? | | | | | | | | | | depend on the specific scope, design and potential | PA documentation will | | | | | | | | | 3. Agency coordination: | | | | | | | | | | Provide a synopsis of coordination with Federal, tribal, state and local environmental, regulatory and resource agencies. Describe their level of participation and how you coordinated with them. consisting of representatives from the City of Troy, Team which met monthly throughout the study du Advisory Committee was engaged to meet at key stoverall). | The Federal Street Corridor Study initiated a Technical Advisory Committee consisting of representatives from the City of Troy, CDTC, and Consultant Team which met monthly throughout the study duration. A broader Study Advisory Committee was engaged to meet at key study milestones (3 overall). | | | | | | | | | b What transportation agencies (e.g. for adjacent jurisdictions) did you coordinate with or were involved during the PEL study? NYSDOT, CDTC, CDTA | | | | | | | | | | c What steps will need to be taken with each agency during NEPA scoping? NYSDOT - SEQRA | | | | | | | | | | 4. Public coordination: | | | | | | | | | | a Provide a synopsis of your coordination efforts with the public and stakeholders. See report section 1.7 | | | | | | | | | | 5. Purpose and Need for the PEL study: | | | | | | | | | | a What was the scope of the PEL study and the reason for completing it? See 2a. | | | | | | | | | | b Provide the purpose and need statement, or the corridor vision and transportation goals and objectives to realize that vision. See report section 1.2 | | | | | | | | | | What steps will need to be taken during the NEPA process to make this a project-level purpose and need statement? Copy and paste, and reaffirm with involved agencies. | es | | | | | | | | | vision, fatal flaw analysis, and possibly mode selection. This may help minimize problems during discussions with resource agencies. Alterna | 6. Range of alternatives: Planning teams need to be cautious during the alternative screen process; alternative screening should focus on purpose and need/corridor vision, fatal flaw analysis, and possibly mode selection. This may help minimize problems during discussions with resource agencies. Alternatives that have fatal flaws or do not meet the purpose and need/corridor vision will not be considered reasonable alternatives, even if they reduce impacts to a particular resource. Detail the range of alternatives considered, screening criteria, and screening process, including: | | | | | | | | | What types of alternatives were looked at? (Provide a one or two sentence summary and reference document.) See report section 1.3 | i | | | | | | | | | b | How did you select the screening criteria and screening process? | Screening criteria were determined in coordination with the Technical Advisory Committee, and considering topics in the PSR shell | |---|--|--| | С | For alternative(s) that were screened out, briefly summarize the reasons for eliminating the alternative(s). (During the initial screenings, this generally will focus on fatal flaws.) | A painted median/road-diet alternative was screened out due to its inability to meet the project objectives to calm traffic and improve bicycle and pedestrian mobility. Sub-alternatives for the segment were screened out such as conventional bike lanes due to public feedback and Committee input. | | d | Which alternatives should be brought forward into NEPA and why? | See report section 1.6 | | e | Did the public, stakeholders, and agencies have an opportunity to comment during this process? | Yes. | | f | Were there unresolved issues with the public, stakeholders, and/or agencies? | While the majority of the public comments were generally supportive of the proposed alternative, there remains a segment that is opposed to roundabouts. | | | 7. Planning assumptions and | d analytical methods: | | а | What is the forecast year used in the PEL study? | 2045 | | b | What method was used for forecasting traffic volumes? | The design year is 20 years beyond the estimated year of completion (ETC+20) per the NYSDOT Highway Design Manual | | С | Are the planning assumptions and the corridor vision/purpose and need statement consistent with each other and with the long-range transportation plan? Are the assumptions still valid? | Yes | | d | What were the future year policy and/or data assumptions used in the transportation planning process related to land use, economic development, transportation costs, and network expansion? | Per NYSDOT guidance, a growth factor (19%) was calculated and applied to the 2022 traffic volumes to account for reduced traffic volumes resulting from changes to travel behavior due to the Covid-19 pandemic. A 0.6% per year growth rate (obtained from the CDTC STEP model) was applied to the Covid-factored volumes to develop the 2025 ETC and 2045 ETC+20 volumes. Traffic volumes were manually reassigned to account for turn restrictions under the median alternatives. | | | 8. Environmental resources (wetlands, cultural, etc.) reviewed. For each | resource or group of resources reviewed, provide the following: | | а | In the PEL study, at what level of detail was the resource reviewed and what was the method of review? | Available online tools were used: CRIS (Cultural Resources/SHPO) Mapper and Environmental Resource Mapper (Wetlands, Rare Plants and Animals, Significant Natural Communities) Information for Planning and Consultation (USFWS) IPAC (Endagered Species). CDTC Environmental Screening | | b | Is this resource present in the area and what is the existing environmental condition for this resource? | Natural Communities and Rare Animal habitiat near this location. Unidentified Aquafer. IPAC Endangered Species, Monarch Butterfly, Northern Long Eared Bat. | |----|--|--| | С | What are the issues that need to be considered during NEPA, including potential resource impacts and potential mitigation requirements (if known)? | Further documentation of endagered species, tree cutting restrictions, | | d | How will the planning data provided need to be supplemented during NEPA? | Rescreen through IPAC | | 9 | List environmental resources you are aware of that were not reviewed in the PEL study and why. Indicate whether or not they will need to be reviewed in NEPA and explain why. | None | | 10 | Were cumulative impacts considered in the PEL study? If yes, provide the information or reference where the analysis can be found. | No | | 11 | Describe any mitigation strategies discussed at the planning level that should be analyzed during NEPA. | Mitigation strategies were not discussed during planning, to be evaluated during design | | 12 | What needs to be done during NEPA to make information from the PEL study available to the agencies and the public? Are there PEL study products which can be used or provided to agencies or the public during the NEPA scoping process? | | | | 13. Are there any other issues a future p | roject team should be aware of? | | а | Examples: Controversy, utility problems, access or ROW issues, encroachments into ROW, problematic land owners and/or groups, contact information for stakeholders, special or unique resources in the area, etc | ROW
needed for both roundabouts. Certain stakeholders oppose roundabouts, incorporate roundabout education during public involvement, potential conficts/relocations of underground utilities. | # Appendix C Traffic Volume Data Federal Street is classified as an urban minor arterial and carries approximately 14,300 vehicles per day (vpd). The road is posted at 30 miles per hour and carries about 14,000 vehicles per day based on the traffic volume data collected by NYSDOT in October 2020. This traffic volume data was compared to additional counts conducted in March of 2022 and showed that the 2022 peak hour traffic volumes are approximately 20 percent lower than pre-pandemic conditions. Peak hour intersection turning movement counts from April and December 2021 at the Federal Street/River Street intersection were factored accordingly and balanced with new two-hour peak period counts that included bicycle and pedestrian observations at the two turnaround movements on River Street north and south of Federal Street, as well as the Federal Street/5th Avenue and Federal Street/6th Avenue. To note: new counts were conducted during the mid-day peak period based on an assessment of daily traffic volumes which show mid-day traffic conditions greater than the traditional morning peak period. The 2022 factored traffic volumes form the basis of the traffic forecasts and the resulting level of service analysis. | | Federal Stro | eet/River Street | | |------------------|-------------------|----------------------------|----------------------| | Intersection Leg | Count Date | Count Time | Pedestrian Crossings | | West | Tuesday 12/7/2021 | 7:45 – 8:45 a.m. | 6 | | East | Tuesday 12/7/2021 | 7:45 – 8:45 a.m. | 9 | | South | Tuesday 12/7/2021 | 7:45 – 8:45 a.m. | 3 | | North | Tuesday 12/7/2021 | 7:45 – 8:45 a.m. | 1 | | West | Tuesday 12/7/2021 | 4:30 – 5:30 p.m. | 9 | | East | Tuesday 12/7/2021 | 4:30 – 5:30 p.m. | 9 | | South | Tuesday 12/7/2021 | 4:30 – 5:30 p.m. | 1 | | North | Tuesday 12/7/2021 | 4:30 – 5:30 p.m. | 0 | | West | Tuesday 4/20/2021 | 4:30 – 5:30 p.m. | 9 | | East | Tuesday 4/20/2021 | 4:30 – 5:30 p.m. | 4 | | South | Tuesday 4/20/2021 | 4:30 – 5:30 p.m. | 9 | | North | Tuesday 4/20/2021 | 4:30 – 5:30 p.m. | 4 | | West | Tuesday 3/1/2022 | 12:00 – 1:00 p.m. | 5 | | East | Tuesday 3/1/2022 | 12:00 – 1:00 p.m. | 10 | | South | Tuesday 3/1/2022 | 12:00 – 1:00 p.m. | 0 | | North | Tuesday 3/1/2022 | 12:00 – 1:00 p.m. | 2 | | West | Tuesday 3/1/2022 | 4:30 – 5:30 p.m. | 5 | | East | Tuesday 3/1/2022 | 4:30 – 5:30 p.m. | 0 | | South | Tuesday 3/1/2022 | 4:30 – 5:30 p.m. | 4 | | North | Tuesday 3/1/2022 | 4:30 – 5:30 p.m. | 0 | | | • | North Turnaround | | | Intersection Leg | Count Date | Count Time | Pedestrian Crossings | | King Street | Tuesday 3/1/2022 | 12:00 – 1:00 p.m. | 5 | | River Street | Tuesday 3/1/2022 | 12:00 – 1:00 p.m. | 0 | | U-Turn | Tuesday 3/1/2022 | 12:00 – 1:00 p.m. | 2 | | King Street | Tuesday 3/1/2022 | 4:30 – 5:30 p.m. | 8 | | River Street | Tuesday 3/1/2022 | 4:30 – 5:30 p.m. | 6 | | U-Turn | Tuesday 3/1/2022 | 4:30 – 5:30 p.m. | 9 | | | River Street – | South Turnaround | • | | Intersection Leg | Count Date | Count Time | Pedestrian Crossings | | West | Tuesday 3/1/2022 | 12:00 – 1:00 p.m. | 8 | | East | Tuesday 3/1/2022 | 12:00 – 1:00 p.m. | 5 | | North | Tuesday 3/1/2022 | 12:00 – 1:00 p.m. | 10 | | West | Tuesday 3/1/2022 | 4:30 – 5:30 p.m. | 19 | | East | Tuesday 3/1/2022 | 4:30 – 5:30 p.m. | 11 | | North | Tuesday 3/1/2022 | 4:30 – 5:30 p.m. | 16 | | | Federal Str | eet/6 th Avenue | | | Intersection Leg | Count Date | Count Time | Pedestrian Crossings | | West | Tuesday 12/7/2021 | 12:00 – 1:00 p.m. | 5 | | East | Tuesday 12/7/2021 | 12:00 – 1:00 p.m. | 10 | | South | Tuesday 12/7/2021 | 12:00 – 1:00 p.m. | 0 | | North | Tuesday 12/7/2021 | 12:00 – 1:00 p.m. | 2 | | West | Tuesday 12/7/2021 | 4:30 – 5:30 p.m. | 4 | | East | Tuesday 12/7/2021 | 4:30 – 5:30 p.m. | 0 | | South | Tuesday 12/7/2021 | 4:30 – 5:30 p.m. | 4 | | North | Tuesday 12/7/2021 | 4:30 – 5:30 p.m. | 0 | Project No.: 121-357 File Name : 2022-3-1_River-Federal_12PM Counted By: Site Code : 00121357 Location: River St - Federal St Start Date : 3/1/2022 Comments: 12:00 PM Page No : 1 Groups Printed- Passenger Veh - Heavy Veh - School Buses | | | River St Federal St | | | | | | | | | River St | | | | | Green Island Bridge | | | | | | |--------------------|------|---------------------|-------|-----|------------|------|------|--------------|-----|------------|----------|------------|-------|-----|------------|---------------------|------|-------|-----|------------|------------| | | | So | uthbo | und | | | W | Westbound No | | | | Northbound | | | Eastbound | | | | | | | | Start Time | Left | Thru | Right | Ped | App. Total | Left | Thru | Right | Ped | App. Total | Left | Thru | Right | Ped | App. Total | Left | Thru | Right | Ped | App. Total | Int. Total | | 12:00 PM | 2 | 51 | 38 | 0 | 91 | 20 | 43 | 10 | 2 | 75 | 30 | 51 | 36 | 0 | 117 | 18 | 47 | 27 | 4 | 96 | 379 | | 12:15 PM | 0 | 53 | 21 | 0 | 74 | 20 | 35 | 13 | 6 | 74 | 25 | 46 | 25 | 0 | 96 | 35 | 62 | 44 | 1 | 142 | 386 | | 12:30 PM | 1 | 59 | 37 | 1 | 98 | 27 | 36 | 2 | 2 | 67 | 25 | 47 | 26 | 0 | 98 | 32 | 51 | 29 | 3 | 115 | 378 | | 12:45 PM | 0 | 59 | 23 | 1 | 83 | 27 | 34 | 7 | 3 | 71 | 19 | 66 | 22 | 1 | 108 | 28 | 40 | 28 | 0 | 96 | 358 | | Total | 3 | 222 | 119 | 2 | 346 | 94 | 148 | 32 | 13 | 287 | 99 | 210 | 109 | 1 | 419 | 113 | 200 | 128 | 8 | 449 | 1501 | Grand Total | 3 | 222 | 119 | 2 | 346 | 94 | 148 | 32 | 13 | 287 | 99 | 210 | 109 | 1 | 419 | 113 | 200 | 128 | 8 | 449 | 1501 | | Apprch % | 0.9 | 64.2 | 34.4 | 0.6 | | 32.8 | 51.6 | 11.1 | 4.5 | | 23.6 | 50.1 | 26 | 0.2 | | 25.2 | 44.5 | 28.5 | 1.8 | | | | Total % | 0.2 | 14.8 | 7.9 | 0.1 | 23.1 | 6.3 | 9.9 | 2.1 | 0.9 | 19.1 | 6.6 | 14 | 7.3 | 0.1 | 27.9 | 7.5 | 13.3 | 8.5 | 0.5 | 29.9 | | | Passenger Veh | 3 | 222 | 119 | 2 | 346 | 94 | 148 | 32 | 13 | 287 | 99 | 210 | 109 | 1 | 419 | 113 | 200 | 128 | 8 | 449 | 1501 | | % Passenger Veh | 100 | | Heavy Veh | 0 | | % Heavy Veh | 0 | | School Buses | 0 | | % School Buses | 0 | File Name: 2022-3-1_River-Federal_12PM Site Code : 00121357 Start Date : 3/1/2022 Page No : 2 | | | F | River | St | | | F | edera | St | | | F | River | St | | G | reen | Island | Brid | ge | | |-----------------|-------|----------|-------|--------|------------|---------|------|---------|------|------------|------|------|-------|------|------------|------|------|--------|------|------------|------------| | | | So | uthbo | und | | | W | estbo | und | | | No | rthbo | und | | | Ea | astbo | und | | | | Start Time | Left | Thru | Right | Ped | App. Total | Left | Thru | Right | Ped | App. Total | Left | Thru | Right | Ped | App. Total | Left | Thru | Right | Ped | App. Total | Int. Total | | Peak Hour A | | | | | | | | ak 1 of | 1 | | | | | | | | | | | | | | Peak Hour f | or En | tire Int | ersec | tion B | egins a | t 12:00 |) PM | | | | | | | | | | | | | | | | 12:00 PM | 2 | 51 | 38 | 0 | 91 | 20 | 43 | 10 | 2 | 75 | 30 | 51 | 36 | 0 | 117 | 18 | 47 | 27 | 4 | 96 | 379 | | 12:15 PM | 0 | 53 | 21 | 0 | 74 | 20 | 35 | 13 | 6 | 74 | 25 | 46 | 25 | 0 | 96 | 35 | 62 | 44 | 1 | 142 | 386 | | 12:30 PM | 1 | 59 | 37 | 1 | 98 | 27 | 36 | 2 | 2 | 67 | 25 | 47 | 26 | 0 | 98 | 32 | 51 | 29 | 3 | 115 | 378 | | 12:45 PM | 0 | 59 | 23 | 1 | 83 | 27 | 34 | 7 | 3 | 71 | 19 | 66 | 22 | 1 | 108 | 28 | 40 | 28 | 0 | 96 | 358 | | Total Volume | 3 | 222 | 119 | 2 | 346 | 94 | 148 | 32 | 13 | 287 | 99 | 210 | 109 | 1 | 419 | 113 | 200 | 128 | 8 | 449 | 1501 | | % App. Total | 0.9 | 64.2 | 34.4 | 0.6 | | 32.8 | 51.6 | 11.1 | 4.5 | | 23.6 | 50.1 | 26 | 0.2 | | 25.2 | 44.5 | 28.5 | 1.8 | | | | PHF | .375 | .941 | .783 | .500 | .883 | .870 | .860 | .615 | .542 | .957 | .825 | .795 | .757 | .250 | .895 | .807 | .806 | .727 | .500 | .790 | .972 | | Passenger Veh | 3 | 222 | 119 | 2 | 346 | 94 | 148 | 32 | 13 | 287 | 99 | 210 | 109 | 1 | 419 | 113 | 200 | 128 | 8 | 449 | 1501 | | % Passenger Veh | 100 | | Heavy Veh | 0 | | % Heavy Veh | 0 | | School Buses | 0 | | % School Buses | 0 | ### Federal Street/King Street/River Street Count Date - Tuesday April 20, 2021 | | | Ea | stbou | nd | | We | estbou | ınd | | No | rthboı | und | | Sc | outhb | ound | | |------|---|---------------------------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|------------------|----|-------------------|-------------------|------------------| | | | L | Т | R | С | L | Т | R | С | L | Т | R | С | L | Т | R | С | | 4:30 | V | 47 | 75 | 39 | 2 | 30 | 69 | 3 | 2 | 24 | 50 | 30 | 1 | | 71 | 45 | 1 | | | HV | | | | | 2 | 0 | 1 | | 2 | 1 | 3 | | | | | | | | В | | | | | | | 1 | | | | | | | | | | | | | 47 | 75 | 39 | 161 | 32 | 69 | 5 | 106 | 26 | 51 | 33 | 110 | | 71 | 45 | 116 | | 4:45 | V | 41 |
94 | 42 | 2 | 34 | 35 | 5 | 1 | 28 | 44 | 34 | | | 61 | 31 | 1 | | | HV | 1 | 2 | | | 1 | 1 | 1 | | | 3 | 1 | | | | 4 | | | | В | | | | | | | 1 | | | | | | | | | | | | | 42 | 96 | 42 | 180 | 35 | 36 | 7 | 78 | 28 | 47 | 35 | 110 | | 61 | 35 | 96 | | 5:00 | V | 24 | 91 | 45 | 2 | 25 | 63 | 7 | 1 | 27 | 57 | 35 | 4 | | 55 | 43 | 1 | | | HV | | | 1 | | | | 1 | | | 4 | 1 | | | 2 | 1 | | | | В | | 1 | 1 | | | | | | | | | | | | | | | | | 24 | 92 | 47 | 163 | 25 | 63 | 8 | 96 | 27 | 61 | 36 | 124 | | 57 | 44 | 101 | | 5:15 | V | 46 | 80 | 40 | 3 | 26 | 42 | 4 | | 24 | 38 | 17 | 4 | | 58 | 34 | 1 | | | HV | | | | | 4 | | | | | 2 | 1 | | | 3 | | | | | В | 46 | 80 | 40 | 166 | 30 | 42 | 4 | 76 | 24 | 40 | 18 | 82 | | 61 | 34 | 95 | Total V | 159 | 343 | 168 | 670 | 122 | 210 | 24 | 356 | 105 | 199 | 122 | 426 | | 250 | 158 | 408 | | | % HV | 1% | 1% | 1% | | 6% | 0% | 13% | | 2% | 5% | 5% | | | 2% | 3% | | | | PHF | 0.85 | 0.89 | 0.89 | 0.93 | 0.87 | 0.76 | 0.75 | 0.84 | 0.94 | 0.82 | 0.85 | 0.86 | | 0.88 | 0.88 | 0.88 | | | Pedestrians | | | | 9 | | | | 4 | | | | 9 | | | | 4 | Balance | 16 | 34 | 17 | | | | | | | | | | | | | | | | Covid Update | 201 | 434 | 213 | 771 | 140 | 242 | 28 | 409 | 121 | 229 | 140 | 490 | 0 | 288 | 182 | 469 | eastbound | 848 | | | | | | | | | | | | | | | | | | westbound | 544 | | | | | | | | | | | | | | | | | | Total V % HV PHF Pedestrians Balance Covid Update eastbound | 159
1%
0.85
16
201
848 | 343
1%
0.89 | 168
1%
0.89 | 670
0.93
9 | 122
6%
0.87 | 210
0%
0.76 | 24
13%
0.75 | 356
0.84
4 | 105
2%
0.94 | 199
5%
0.82 | 122
5%
0.85 | 426
0.86
9 | 0 | 250
2%
0.88 | 158
3%
0.88 | 408
0.88
4 | Project No.: 121-357 File Name : 2022-3-1_6th-Federal_12PM Counted By: BP Site Code : 12135701 Location: Federal St-6th Ave Start Date : 3/1/2022 Comments:12PM Page No : 1 Groups Printed- Passenger Veh - Heavy Veh - School Buses | | | (| 6th A | /e | | • | F | edera | | , | | (| 6th A | /e | | | F | ederal | St | | | |--------------------|------|------|-------|------|------------|------|------|-------|------|------------|------|------|-------|------|------------|------|------|--------|------|------------|------------| | | | So | uthbo | und | | | W | estbo | und | | | No | rthbo | und | | | Ea | astbou | ınd | | | | Start Time | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Int. Total | | 12:00 PM | 17 | 65 | 20 | 10 | 112 | 14 | 28 | 1 | 0 | 43 | 17 | 38 | 15 | 0 | 70 | 17 | 41 | 9 | 0 | 67 | 292 | | 12:15 PM | 8 | 52 | 18 | 9 | 87 | 18 | 42 | 5 | 0 | 65 | 15 | 27 | 12 | 0 | 54 | 19 | 41 | 5 | 1 | 66 | 272 | | 12:30 PM | 19 | 51 | 30 | 19 | 119 | 11 | 29 | 6 | 0 | 46 | 8 | 34 | 8 | 1 | 51 | 15 | 45 | 6 | 3 | 69 | 285 | | 12:45 PM | 9 | 62 | 26 | 14 | 111 | 16 | 32 | 4 | 0 | 52 | 15 | 33 | 18 | 2 | 68 | 9 | 36 | 8 | 4 | 57 | 288 | | Total | 53 | 230 | 94 | 52 | 429 | 59 | 131 | 16 | 0 | 206 | 55 | 132 | 53 | 3 | 243 | 60 | 163 | 28 | 8 | 259 | 1137 | Grand Total | 53 | 230 | 94 | 52 | 429 | 59 | 131 | 16 | 0 | 206 | 55 | 132 | 53 | 3 | 243 | 60 | 163 | 28 | 8 | 259 | 1137 | | Apprch % | 12.4 | 53.6 | 21.9 | 12.1 | | 28.6 | 63.6 | 7.8 | 0 | | 22.6 | 54.3 | 21.8 | 1.2 | | 23.2 | 62.9 | 10.8 | 3.1 | | | | Total % | 4.7 | 20.2 | 8.3 | 4.6 | 37.7 | 5.2 | 11.5 | 1.4 | 0 | 18.1 | 4.8 | 11.6 | 4.7 | 0.3 | 21.4 | 5.3 | 14.3 | 2.5 | 0.7 | 22.8 | | | Passenger Veh | 50 | 226 | 92 | 50 | 418 | 57 | 125 | 15 | 0 | 197 | 55 | 129 | 50 | 3 | 237 | 55 | 158 | 28 | 8 | 249 | 1101 | | % Passenger Veh | 94.3 | 98.3 | 97.9 | 96.2 | 97.4 | 96.6 | 95.4 | 93.8 | 0 | 95.6 | 100 | 97.7 | 94.3 | 100 | 97.5 | 91.7 | 96.9 | 100 | 100 | 96.1 | 96.8 | | Heavy Veh | 2 | 4 | 1 | 2 | 9 | 2 | 4 | 1 | 0 | 7 | 0 | 2 | 3 | 0 | 5 | 5 | 5 | 0 | 0 | 10 | 31 | | % Heavy Veh | 3.8 | 1.7 | 1.1 | 3.8 | 2.1 | 3.4 | 3.1 | 6.2 | 0 | 3.4 | 0 | 1.5 | 5.7 | 0 | 2.1 | 8.3 | 3.1 | 0 | 0 | 3.9 | 2.7 | | School Buses | 1 | 0 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | | % School Buses | 1.9 | 0 | 1.1 | 0 | 0.5 | 0 | 1.5 | 0 | 0 | 1 | 0 | 8.0 | 0 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0.4 | File Name: 2022-3-1_6th-Federal_12PM Site Code : 12135701 Start Date : 3/1/2022 Page No : 2 | | | (| oth Av | ⁄e | | | Fe | ederal | St | | | (| 6th A۱ | /e | | | F | edera | St | | | |-----------------|--------|----------|--------|---------|------------|---------|--------|--------|--------|------------|------|------|--------|------|------------|------|------|-------|------|------------|------------| | | | So | uthbo | und | | | We | estbo | und | | | No | rthbo | und | | | Ea | astbo | und | | | | Start Time | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Int. Total | | Peak Hour / | | | | | | | | | ak 1 o | f 1 | | | | | | | | | | | | | Peak Hour f | or Ent | tire Int | ersec | tion Be | egins a | t 12:00 | 0:00 P | M | | | | | | | | | | | | | | | 12:00:00 PM | 17 | 65 | 20 | 10 | 112 | 14 | 28 | 1 | 0 | 43 | 17 | 38 | 15 | 0 | 70 | 17 | 41 | 9 | 0 | 67 | 292 | | 12:15:00 PM | 8 | 52 | 18 | 9 | 87 | 18 | 42 | 5 | 0 | 65 | 15 | 27 | 12 | 0 | 54 | 19 | 41 | 5 | 1 | 66 | 272 | | 12:30:00 PM | 19 | 51 | 30 | 19 | 119 | 11 | 29 | 6 | 0 | 46 | 8 | 34 | 8 | 1 | 51 | 15 | 45 | 6 | 3 | 69 | 285 | | 12:45:00 PM | 9 | 62 | 26 | 14 | 111 | 16 | 32 | 4 | 0 | 52 | 15 | 33 | 18 | 2 | 68 | 9 | 36 | 8 | 4 | 57 | 288 | | Total Volume | 53 | 230 | 94 | 52 | 429 | 59 | 131 | 16 | 0 | 206 | 55 | 132 | 53 | 3 | 243 | 60 | 163 | 28 | 8 | 259 | 1137 | | % App. Total | 12.4 | 53.6 | 21.9 | 12.1 | | 28.6 | 63.6 | 7.8 | 0 | | 22.6 | 54.3 | 21.8 | 1.2 | | 23.2 | 62.9 | 10.8 | 3.1 | | <u> </u> | | PHF | .697 | .885 | .783 | .684 | .901 | .819 | .780 | .667 | .000 | .792 | .809 | .868 | .736 | .375 | .868 | .789 | .906 | .778 | .500 | .938 | .973 | | Passenger Veh | 50 | 226 | 92 | 50 | 418 | 57 | 125 | 15 | 0 | 197 | 55 | 129 | 50 | 3 | 237 | 55 | 158 | 28 | 8 | 249 | 1101 | | % Passenger Veh | 94.3 | 98.3 | 97.9 | 96.2 | 97.4 | 96.6 | 95.4 | 93.8 | 0 | 95.6 | 100 | 97.7 | 94.3 | 100 | 97.5 | 91.7 | 96.9 | 100 | 100 | 96.1 | 96.8 | | Heavy Veh | 2 | 4 | 1 | 2 | 9 | 2 | 4 | 1 | 0 | 7 | 0 | 2 | 3 | 0 | 5 | 5 | 5 | 0 | 0 | 10 | 31 | | % Heavy Veh | 3.8 | 1.7 | 1.1 | 3.8 | 2.1 | 3.4 | 3.1 | 6.3 | 0 | 3.4 | 0 | 1.5 | 5.7 | 0 | 2.1 | 8.3 | 3.1 | 0 | 0 | 3.9 | 2.7 | | School Buses | 1 | 0 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | | % School Buses | 1.9 | 0 | 1.1 | 0 | 0.5 | 0 | 1.5 | 0 | 0 | 1.0 | 0 | 8.0 | 0 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0.4 | File Name: 2022-3-1_6th-Federal_430PM Project No.: 121-357 Counted By: BP Site Code : 12135701 Location: 6th Ave-Federal St Start Date : 3/1/2022 Page No : 1 Comments: PM PK Groups Printed- Passenger Veh - Heavy Veh - School Buses | | | (| 6th A | ve | | | | edera | | J O. 10. | | , | 6th A | /e | | | F | ederal | St | | | |-----------------|------|------|-------|------|------------|------|------|-------|------|-----------------|------|------|-------|------|------------|------|------|--------|------|------------|------------| | | | So | uthbo | und | | | W | estbo | und | | | No | rthbo | und | | | Ea | astbou | ınd | | | | Start Time | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Int. Total | | 04:30 PM | 50 | 78 | 13 | 20 | 161 | 21 | 52 | 12 | 0 | 85 | 15 | 47 | 12 | 1 | 75 | 25 | 78 | 6 | 0 | 109 | 430 | | 04:45 PM | 35 | 51 | 17 | 22 | 125 | 12 | 34 | 5 | 1 | 52 | 23 | 46 | 16 | 0 | 85 | 22 | 74 | 11 | 0 | 107 | 369 | | Total | 85 | 129 | 30 | 42 | 286 | 33 | 86 | 17 | 1 | 137 | 38 | 93 | 28 | 1 | 160 | 47 | 152 | 17 | 0 | 216 | 799 | 05:00 PM | 35 | 75 | 15 | 14 | 139 | 7 | 41 | 15 | 0 | 63 | 25 | 54 | 21 | 0 | 100 | 21 | 61 | 10 | 1 | 93 | 395 | | 05:15 PM | 38 | 80 | 17 | 16 | 151 | 9 | 44 | 2 | 0 | 55 | 22 | 39 | 16 | 0 | 77 | 25 | 84 | 11 | 1 | 121 | 404 | | Grand Total | 158 | 284 | 62 | 72 | 576 | 49 | 171 | 34 | 1 | 255 | 85 | 186 | 65 | 1 | 337 | 93 | 297 | 38 | 2 | 430 | 1598 | | Apprch % | 27.4 | 49.3 | 10.8 | 12.5 | | 19.2 | 67.1 | 13.3 | 0.4 | | 25.2 | 55.2 | 19.3 | 0.3 | | 21.6 | 69.1 | 8.8 | 0.5 | | | | Total % | 9.9 | 17.8 | 3.9 | 4.5 | 36 | 3.1 | 10.7 | 2.1 | 0.1 | 16 | 5.3 | 11.6 | 4.1 | 0.1 | 21.1 | 5.8 | 18.6 | 2.4 | 0.1 | 26.9 | | | Passenger Veh | 156 | 284 | 54 | 71 | 565 | 47 | 168 | 34 | 1 | 250 | 81 | 184 | 61 | 1 | 327 | 87 | 295 | 37 | 2 | 421 | 1563 | | % Passenger Veh | 98.7 | 100 | 87.1 | 98.6 | 98.1 | 95.9 | 98.2 | 100 | 100 | 98 | 95.3 | 98.9 | 93.8 | 100 | 97 | 93.5 | 99.3 | 97.4 | 100 | 97.9 | 97.8 | | Heavy Veh | 2 | 0 | 7 | 1 | 10 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 4 | 0 | 5 | 5 | 2 | 1 | 0 | 8 | 25 | | % Heavy Veh | 1.3 | 0 | 11.3 | 1.4 | 1.7 | 0 | 1.2 | 0 | 0 | 8.0 | 0 | 0.5 | 6.2 | 0 | 1.5 | 5.4 | 0.7 | 2.6 | 0 | 1.9 | 1.6 | | School Buses | 0 | 0 | 1 | 0 | 1 | 2 | 1 | 0 | 0 | 3 | 4 | 1 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 1 | 10 | | % School Buses | 0 | 0 | 1.6 | 0 | 0.2 | 4.1 | 0.6 | 0 | 0 | 1.2 | 4.7 | 0.5 | 0 | 0 | 1.5 | 1.1 | 0 | 0 | 0 | 0.2 | 0.6 | File Name: 2022-3-1_6th-Federal_430PM Site Code : 12135701 Start Date : 3/1/2022 Page No : 2 | | | (| 6th Av | /e | | | F | edera | St | | | (| 6th A | /e | | | F | edera | St | | | |-----------------|--------|----------|--------|--------|------------|---------|-------|-------|--------|------------|------|------|-------|------|------------|------|------|-------|------|------------
------------| | | | So | uthbo | und | | | W | estbo | und | | | No | rthbo | und | | | Ea | astbo | und | | | | Start Time | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Left | Thru | Right | RTOR | App. Total | Int. Total | | Peak Hour / | | | | | | | | | 1 of 1 | | | | | | | | | | | | | | Peak Hour f | or Ent | tire Int | tersec | tion B | egins a | t 4:30: | 00 PN | Λ | | | | | | | | | | | | | | | 4:30:00 PM | 50 | 78 | 13 | 20 | 161 | 21 | 52 | 12 | 0 | 85 | 15 | 47 | 12 | 1 | 75 | 25 | 78 | 6 | 0 | 109 | 430 | | 4:45:00 PM | 35 | 51 | 17 | 22 | 125 | 12 | 34 | 5 | 1 | 52 | 23 | 46 | 16 | 0 | 85 | 22 | 74 | 11 | 0 | 107 | 369 | | 5:00:00 PM | 35 | 75 | 15 | 14 | 139 | 7 | 41 | 15 | 0 | 63 | 25 | 54 | 21 | 0 | 100 | 21 | 61 | 10 | 1 | 93 | 395 | | 5:15:00 PM | 38 | 80 | 17 | 16 | 151 | 9 | 44 | 2 | 0 | 55 | 22 | 39 | 16 | 0 | 77 | 25 | 84 | 11 | 1 | 121 | 404 | | Total Volume | 158 | 284 | 62 | 72 | 576 | 49 | 171 | 34 | 1 | 255 | 85 | 186 | 65 | 1 | 337 | 93 | 297 | 38 | 2 | 430 | 1598 | | % App. Total | 27.4 | 49.3 | 10.8 | 12.5 | | 19.2 | 67.1 | 13.3 | 0.4 | | 25.2 | 55.2 | 19.3 | 0.3 | | 21.6 | 69.1 | 8.8 | 0.5 | | | | PHF | .790 | .888 | .912 | .818 | .894 | .583 | .822 | .567 | .250 | .750 | .850 | .861 | .774 | .250 | .843 | .930 | .884 | .864 | .500 | .888 | .929 | | Passenger Veh | 156 | 284 | 54 | 71 | 565 | 47 | 168 | 34 | 1 | 250 | 81 | 184 | 61 | 1 | 327 | 87 | 295 | 37 | 2 | 421 | 1563 | | % Passenger Veh | 98.7 | 100 | 87.1 | 98.6 | 98.1 | 95.9 | 98.2 | 100 | 100 | 98.0 | 95.3 | 98.9 | 93.8 | 100 | 97.0 | 93.5 | 99.3 | 97.4 | 100 | 97.9 | 97.8 | | Heavy Veh | 2 | 0 | 7 | 1 | 10 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 4 | 0 | 5 | 5 | 2 | 1 | 0 | 8 | 25 | | % Heavy Veh | 1.3 | 0 | 11.3 | 1.4 | 1.7 | 0 | 1.2 | 0 | 0 | 0.8 | 0 | 0.5 | 6.2 | 0 | 1.5 | 5.4 | 0.7 | 2.6 | 0 | 1.9 | 1.6 | | School Buses | 0 | 0 | 1 | 0 | 1 | 2 | 1 | 0 | 0 | 3 | 4 | 1 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 1 | 10 | | % School Buses | 0 | 0 | 1.6 | 0 | 0.2 | 4.1 | 0.6 | 0 | 0 | 1.2 | 4.7 | 0.5 | 0 | 0 | 1.5 | 1.1 | 0 | 0 | 0 | 0.2 | 0.6 | # Appendix D **Level of Service Calculations** A level of service analysis was conducted at the Federal Street/River Street and Federal Street/6th Avenue intersections for the No-Build and Build concepts based on a 2025 estimated year of completion (ETC) and 2045 ETC+20 for both single-lane and multi-lane roundabout sub-alternatives. Level of service is a measure of the quality of travel and is expressed in terms of delay ranging from LOS A (little delay), to LOS F (long delay). The development of the traffic forecasts were coordinated with the City of Troy and the Capital District Transportation Committee and are based on the 2022 factored traffic volumes that account for an approximate 20% increase to the raw 2022 traffic volumes to account for reduced travel resulting from the covid-19 pandemic, as well as a 0.6 percent per year growth rate | | _# | → | • | • | ← | €. | 4 | 7 | <i>></i> | ↓ | 4 | | |-------------------------------|------------|------------|-------|-----------|-----------|-------------|-----------|-----------|-------------|------------------|------|--| | Movement | EBL | EBT | EBR | WBL | WBT | WBR2 | NBL | NBR | NBR2 | SBT | SBR | | | Lane Configurations | ሻ | ∱ } | | ሻ | ^ | | ሻ | 7 | 7 | ↑ ↑ | | | | Traffic Volume (vph) | 113 | 203 | 136 | 102 | 161 | 49 | 99 | 210 | 111 | 222 | 121 | | | Future Volume (vph) | 113 | 203 | 136 | 102 | 161 | 49 | 99 | 210 | 111 | 222 | 121 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | 1.0 | 4.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 0.95 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 0.99 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | Frt | 1.00 | 0.94 | | 1.00 | 0.97 | | 1.00 | 0.85 | 0.85 | 0.95 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | Satd. Flow (prot) | 1787 | 3372 | | 1687 | 3458 | | 1787 | 1568 | 1568 | 3325 | | | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | Satd. Flow (perm) | 1787 | 3372 | | 1687 | 3458 | | 1787 | 1568 | 1568 | 3325 | | | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | | Growth Factor (vph) | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | | | Adj. Flow (vph) | 139 | 249 | 167 | 125 | 198 | 60 | 121 | 258 | 136 | 272 | 148 | | | RTOR Reduction (vph) | 0 | 102 | 0 | 0 | 102 | 0 | 0 | 0 | 60 | 63 | 0 | | | Lane Group Flow (vph) | 139 | 314 | 0 | 125 | 156 | 0 | 121 | 258 | 76 | 357 | 0 | | | Confl. Peds. (#/hr) | | | | | | | 4 | | | | 4 | | | Heavy Vehicles (%) | 1% | 1% | 0% | 7% | 1% | 0% | 1% | 3% | 3% | 3% | 1% | | | Turn Type | Prot | NA | | Prot | NA | | Prot | | custom | NA | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | 7 | 4 | | | | Permitted Phases | | _ | | • | | | • | | 148 | • | | | | Actuated Green, G (s) | 10.1 | 16.2 | | 8.2 | 14.3 | | 7.8 | 21.7 | 40.0 | 14.0 | | | | Effective Green, g (s) | 11.1 | 17.2 | | 9.2 | 15.3 | | 8.8 | 22.7 | 37.0 | 15.0 | | | | Actuated g/C Ratio | 0.17 | 0.26 | | 0.14 | 0.23 | | 0.13 | 0.34 | 0.56 | 0.23 | | | | Clearance Time (s) | 5.0 | 5.0 | | 5.0 | 5.0 | | 5.0 | 5.0 | 2.0 | 5.0 | | | | Vehicle Extension (s) | 2.0 | 4.0 | | 2.0 | 4.0 | | 2.0 | 4.0 | 2.0 | 2.0 | | | | Lane Grp Cap (vph) | 299 | 876 | | 234 | 799 | | 237 | 537 | 876 | 753 | | | | v/s Ratio Prot | c0.08 | c0.09 | | 0.07 | 0.05 | | 0.07 | c0.16 | 0.01 | c0.11 | | | | v/s Ratio Perm | 60.00 | 60.03 | | 0.01 | 0.00 | | 0.07 | 60.10 | 0.04 | 60.11 | | | | v/c Ratio | 0.46 | 0.36 | | 0.53 | 0.19 | | 0.51 | 0.48 | 0.09 | 0.47 | | | | Uniform Delay, d1 | 24.9 | 20.0 | | 26.5 | 20.5 | | 26.7 | 17.1 | 6.8 | 22.2 | | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | Incremental Delay, d2 | 0.4 | 0.3 | | 1.00 | 0.2 | | 0.8 | 0.9 | 0.0 | 0.2 | | | | Delay (s) | 25.3 | 20.3 | | 27.7 | 20.7 | | 27.5 | 18.0 | 6.8 | 22.4 | | | | Level of Service | 23.3
C | 20.3
C | | 27.7
C | 20.7
C | | 27.5
C | 10.0
B | 0.0
A | 22.4
C | | | | Approach Delay (s) | U | 21.6 | | U | 22.9 | | U | U | ^ | 22.4 | | | | Approach LOS | | Z1.0 | | | C | | | | | 22. 4 | | | | Intersection Summary | | | | | | | | | | | | | | HCM 2000 Control Delay | | | 20.9 | Н | CM 2000 | Level of | Service | | С | | | | | HCM 2000 Volume to Capa | city ratio | | 0.47 | | J.11 2000 | . 20101011 | 20. 1100 | | J | | | | | Actuated Cycle Length (s) | only ratio | | 66.2 | S | um of los | t time (s) | | | 16.0 | | | | | Intersection Capacity Utiliza | tion | | 52.2% | | | of Service | | | 10.0 | | | | | Analysis Period (min) | UOII | | 15 | - IC | O LEVE | or our vice | | | | | | | | c Critical Lane Group | | | 10 | | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | ~ | / | + | 4 | |-------------------------------|------------|------------|-------|-------|-------------|------------|---------|----------|------|----------|----------|-------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ β | | ሻ | 1• | | | र्सी के | | | 4₽ | 7 | | Traffic Volume (vph) | 60 | 163 | 36 | 59 | 131 | 16 | 55 | 132 | 56 | 53 | 230 | 146 | | Future Volume (vph) | 60 | 163 | 36 | 59 | 131 | 16 | 55 | 132 | 56 | 53 | 230 | 146 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 12 | 12 | 12 | 13 | 13 | 13 | 11 | 11 | 11 | 11 | 11 | 14 | | Total Lost time (s) | 5.0 | 5.0 | | 5.0 | 5.0 | | | 5.0 | | | 5.0 | 5.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | | 0.95 | | | 0.95 | 1.00 | | Frt | 1.00 | 0.97 | | 1.00 | 0.98 | | | 0.97 | | | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.99 | | | 0.99 | 1.00 | | Satd. Flow (prot) | 1671 | 3428 | | 1811 | 1837 | | | 3251 | | | 3365 | 1672 | | Flt Permitted | 0.48 | 1.00 | | 0.60 | 1.00 | | | 0.99 | | | 0.99 | 1.00 | | Satd. Flow (perm) | 840 | 3428 | | 1144 | 1837 | | | 3251 | | | 3365 | 1672 | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | Growth Factor (vph) | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | | Adj. Flow (vph) | 74 | 200 | 44 | 72 | 161 | 20 | 67 | 162 | 69 | 65 | 282 | 179 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 74 | 244 | 0 | 72 | 181 | 0 | 0 | 298 | 0 | 0 | 347 | 179 | | Heavy Vehicles (%) | 8% | 3% | 0% | 3% | 5% | 6% | 0% | 2% | 6% | 6% | 2% | 3% | | Turn Type | pm+pt | NA | | pm+pt | NA | | Split | NA | | Split | NA | pm+ov | | Protected Phases | 7 | 4 | | 3 | 8 | | 2 | 2 | | 6 | 6 | 7 | | Permitted Phases | 4 | | | 8 | | | | | | | | 6 | | Actuated Green, G (s) | 28.7 | 18.7 | | 24.7 | 16.7 | | | 20.0 | | | 20.0 | 30.0 | | Effective Green, g (s) | 28.7 | 18.7 | | 24.7 | 16.7 | | | 20.0 | | | 20.0 | 30.0 | | Actuated g/C Ratio | 0.33 | 0.22 | | 0.28 | 0.19 | | | 0.23 | | | 0.23 | 0.35 | | Clearance Time (s) | 5.0 | 5.0 | | 5.0 | 5.0 | | | 5.0 | | | 5.0 | 5.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 373 | 739 | | 387 | 353 | | | 749 | | | 776 | 674 | | v/s Ratio Prot | 0.02 | 0.07 | | 0.02 | c0.10 | | | c0.09 | | | c0.10 | c0.03 | | v/s Ratio Perm | 0.04 | | | 0.04 | | | | | | | | 0.08 | | v/c Ratio | 0.20 | 0.33 | | 0.19 | 0.51 | | | 0.40 | | | 0.45 | 0.27 | | Uniform Delay, d1 | 20.4 | 28.7 | | 23.1 | 31.4 | | | 28.2 | | | 28.6 | 20.4 | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | |
1.00 | | | 1.00 | 1.00 | | Incremental Delay, d2 | 0.3 | 0.3 | | 0.2 | 1.3 | | | 0.3 | | | 0.4 | 0.2 | | Delay (s) | 20.7 | 29.0 | | 23.3 | 32.6 | | | 28.6 | | | 29.0 | 20.6 | | Level of Service | С | С | | С | С | | | С | | | С | С | | Approach Delay (s) | | 27.1 | | | 30.0 | | | 28.6 | | | 26.2 | | | Approach LOS | | С | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM 2000 Control Delay | | | 27.6 | Н | CM 2000 | Level of | Service | | С | | | | | HCM 2000 Volume to Capa | city ratio | | 0.43 | | | | | | | | | | | Actuated Cycle Length (s) | | | 86.7 | | um of lost | | | | 20.0 | | | | | Intersection Capacity Utiliza | tion | | 70.8% | IC | CU Level of | of Service | ! | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | _# | → | • | • | ← | ٧. | 4 | 7 | <i>></i> | ↓ | 4 | | |-------------------------------|------------|------------|-------|------|----------|------------|---------|-------|-------------|------------|------|--| | Movement | EBL | EBT | EBR | WBL | WBT | WBR2 | NBL | NBR | NBR2 | SBT | SBR | | | Lane Configurations | ሻ | ↑ ↑ | | ች | ^ | | ሻ | 7 | 7 | ↑ ⊅ | | | | Traffic Volume (vph) | 159 | 343 | 168 | 124 | 214 | 24 | 105 | 199 | 122 | 250 | 158 | | | Future Volume (vph) | 159 | 343 | 168 | 124 | 214 | 24 | 105 | 199 | 122 | 250 | 158 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | 1.0 | 4.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 0.95 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 0.99 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | Frt | 1.00 | 0.95 | | 1.00 | 0.98 | | 1.00 | 0.85 | 0.85 | 0.94 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | Satd. Flow (prot) | 1787 | 3409 | | 1687 | 3523 | | 1787 | 1568 | 1568 | 3307 | | | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | Satd. Flow (perm) | 1787 | 3409 | | 1687 | 3523 | | 1787 | 1568 | 1568 | 3307 | | | | Peak-hour factor, PHF | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | | Growth Factor (vph) | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | | | Adj. Flow (vph) | 197 | 425 | 208 | 154 | 265 | 30 | 130 | 247 | 151 | 310 | 196 | | | RTOR Reduction (vph) | 0 | 51 | 0 | 0 | 98 | 0 | 0 | 0 | 59 | 90 | 0 | | | Lane Group Flow (vph) | 197 | 582 | 0 | 154 | 197 | 0 | 130 | 247 | 92 | 416 | 0 | | | Confl. Peds. (#/hr) | | | | | | | 4 | | | | 4 | | | Heavy Vehicles (%) | 1% | 1% | 0% | 7% | 1% | 0% | 1% | 3% | 3% | 3% | 1% | | | Turn Type | Prot | NA | | Prot | NA | | Prot | Prot | custom | NA | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | 7 | 4 | | | | Permitted Phases | | | | | | | | | 148 | | | | | Actuated Green, G (s) | 14.0 | 21.2 | | 12.4 | 19.6 | | 10.7 | 25.5 | 48.1 | 15.0 | | | | Effective Green, g (s) | 15.0 | 22.2 | | 13.4 | 20.6 | | 11.7 | 26.5 | 45.1 | 16.0 | | | | Actuated g/C Ratio | 0.19 | 0.28 | | 0.17 | 0.26 | | 0.15 | 0.33 | 0.57 | 0.20 | | | | Clearance Time (s) | 5.0 | 5.0 | | 5.0 | 5.0 | | 5.0 | 5.0 | 2.0 | 5.0 | | | | Vehicle Extension (s) | 2.0 | 4.0 | | 2.0 | 4.0 | | 2.0 | 4.0 | 2.0 | 2.0 | | | | Lane Grp Cap (vph) | 338 | 954 | | 285 | 915 | | 263 | 523 | 891 | 667 | | | | v/s Ratio Prot | c0.11 | c0.17 | | 0.09 | 0.06 | | 0.07 | c0.16 | 0.01 | c0.13 | | | | v/s Ratio Perm | • | •••• | | 0.00 | 0.00 | | 0.0. | | 0.05 | 001.10 | | | | v/c Ratio | 0.58 | 0.61 | | 0.54 | 0.21 | | 0.49 | 0.47 | 0.10 | 0.62 | | | | Uniform Delay, d1 | 29.3 | 24.8 | | 30.1 | 23.0 | | 31.1 | 20.9 | 7.8 | 28.9 | | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | Incremental Delay, d2 | 1.7 | 1.3 | | 1.1 | 0.2 | | 0.5 | 0.9 | 0.0 | 1.3 | | | | Delay (s) | 31.0 | 26.1 | | 31.3 | 23.2 | | 31.6 | 21.8 | 7.9 | 30.2 | | | | Level of Service | С | С | | С | С | | С | С | Α | С | | | | Approach Delay (s) | | 27.2 | | | 25.9 | | | | | 30.2 | | | | Approach LOS | | С | | | С | | | | | С | | | | Intersection Summary | | | | | | | | | | | | | | HCM 2000 Control Delay | | | 26.0 | H | CM 2000 | Level of | Service | | С | | | | | HCM 2000 Volume to Capac | city ratio | | 0.61 | | | | | | | | | | | Actuated Cycle Length (s) | | | 79.3 | | | t time (s) | | | 16.0 | | | | | Intersection Capacity Utiliza | tion | | 62.0% | IC | CU Level | of Service | | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | <i>></i> | \ | ţ | 1 | |----------------------------------|---------------|-------------|-------|-------------|-------------|------------|---------|-------------|-------------|----------|-------------|-------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ∱ î≽ | | Ť | f) | | | र्सी | | | 4₽ | 7 | | Traffic Volume (vph) | 97 | 310 | 42 | 49 | 171 | 35 | 85 | 186 | 66 | 158 | 284 | 134 | | Future Volume (vph) | 97 | 310 | 42 | 49 | 171 | 35 | 85 | 186 | 66 | 158 | 284 | 134 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 12 | 12 | 12 | 13 | 13 | 13 | 11 | 11 | 11 | 11 | 11 | 14 | | Total Lost time (s) | 5.0 | 5.0 | | 5.0 | 5.0 | | | 5.0 | | | 5.0 | 5.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | | 0.95 | | | 0.95 | 1.00 | | Frt | 1.00 | 0.98 | | 1.00 | 0.97 | | | 0.97 | | | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.99 | | | 0.98 | 1.00 | | Satd. Flow (prot) | 1687 | 3502 | | 1793 | 1882 | | | 3248 | | | 3416 | 1524 | | Flt Permitted | 0.33 | 1.00 | | 0.40 | 1.00 | | | 0.99 | | | 0.98 | 1.00 | | Satd. Flow (perm) | 590 | 3502 | | 758 | 1882 | | | 3248 | | | 3416 | 1524 | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | | Growth Factor (vph) | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | 119% | | Adj. Flow (vph) | 124 | 397 | 54 | 63 | 219 | 45 | 109 | 238 | 84 | 202 | 363 | 171 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 124 | 451 | 0 | 63 | 264 | 0 | 0 | 431 | 0 | 0 | 565 | 171 | | Heavy Vehicles (%) | 7% | 1% | 3% | 4% | 2% | 0% | 5% | 1% | 6% | 1% | 0% | 13% | | Turn Type | pm+pt | NA | | pm+pt | NA | | Split | NA | | Split | NA | pm+ov | | Protected Phases | 7 | 4 | | 3 | 8 | | 2 | 2 | | 6 | 6 | 7 | | Permitted Phases | 4 | 00.0 | | 8 | 00.0 | | | 04.0 | | | 00.5 | 6 | | Actuated Green, G (s) | 33.4 | 23.2 | | 28.8 | 20.9 | | | 21.8 | | | 23.5 | 33.7 | | Effective Green, g (s) | 33.4 | 23.2 | | 28.8 | 20.9 | | | 21.8 | | | 23.5 | 33.7 | | Actuated g/C Ratio | 0.35
5.0 | 0.24
5.0 | | 0.30
5.0 | 0.22
5.0 | | | 0.23
5.0 | | | 0.24
5.0 | 0.35
5.0 | | Clearance Time (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | 3.0 | 3.0 | | Vehicle Extension (s) | | 842 | | | 408 | | | | | | | 611 | | Lane Grp Cap (vph) | 320 | | | 311
0.02 | | | | 734 | | | 832 | | | v/s Ratio Prot
v/s Ratio Perm | c0.04
0.09 | 0.13 | | 0.02 | c0.14 | | | c0.13 | | | c0.17 | 0.03 | | v/c Ratio | 0.09 | 0.54 | | 0.04 | 0.65 | | | 0.59 | | | 0.68 | 0.08 | | Uniform Delay, d1 | 22.8 | 31.9 | | 24.6 | 34.4 | | | 33.3 | | | 33.0 | 22.6 | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | 1.00 | 1.00 | | Incremental Delay, d2 | 0.8 | 0.7 | | 0.3 | 3.5 | | | 1.00 | | | 2.2 | 0.3 | | Delay (s) | 23.6 | 32.6 | | 25.0 | 37.9 | | | 34.5 | | | 35.3 | 22.9 | | Level of Service | 23.0
C | 02.0
C | | 23.0
C | D | | | 04.0
C | | | 00.0
D | 22.5
C | | Approach Delay (s) | | 30.6 | | | 35.4 | | | 34.5 | | | 32.4 | J | | Approach LOS | | C | | | D | | | C | | | C | | | Intersection Summary | | | | | | | | | | | | | | HCM 2000 Control Delay | | | 32.8 | Н | CM 2000 | Level of | Service | | С | | | | | HCM 2000 Volume to Capa | city ratio | | 0.60 | | | | | | | | | | | Actuated Cycle Length (s) | | | 96.4 | | um of lost | | | | 20.0 | | | | | Intersection Capacity Utiliza | ition | | 71.6% | IC | CU Level of | of Service | • | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ⊸ # | → | • | • | • | ٤ | 4 | 7 | <i>></i> | ↓ | ✓ | | |-------------------------------|-------------------------------|------------|-------|------|----------|------------|----------|-------|-------------|------------|------|--| | Movement | EBL | EBT | EBR | WBL | WBT | WBR2 | NBL | NBR | NBR2 | SBT | SBR | | | Lane Configurations | ሻ | ∱ } | | ሻ | 1 | 7 | ă | 7 | 7 | ∱ } | | | | Traffic Volume (vph) | 136 | 246 | 165 | 123 | 195 | 59 | 120 | 255 | 134 | 269 | 147 | | | Future Volume (vph) | 136 | 246 | 165 | 123 | 195 | 59 | 120 | 255 | 134 | 269 | 147 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | 5.0 | 4.0 | 4.0 | 1.0 | 4.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.95 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | Frt | 1.00 | 0.94 | | 1.00 | 1.00 | 0.85 | 1.00 | 0.85 | 0.85 | 0.95 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | | | | Satd. Flow (prot) | 1787 | 3373 | | 1687 | 1881 | 1615 | 1787 | 1568 | 1568 | 3313 | | | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | | | |
Satd. Flow (perm) | 1787 | 3373 | | 1687 | 1881 | 1615 | 1787 | 1568 | 1568 | 3313 | | | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | | Adj. Flow (vph) | 140 | 254 | 170 | 127 | 201 | 61 | 124 | 263 | 138 | 277 | 152 | | | RTOR Reduction (vph) | 0 | 85 | 0 | 0 | 0 | 48 | 0 | 0 | 56 | 56 | 0 | | | Lane Group Flow (vph) | 140 | 339 | 0 | 127 | 201 | 13 | 124 | 263 | 82 | 373 | 0 | | | Confl. Peds. (#/hr) | | | | | | | 4 | | | | 4 | | | Heavy Vehicles (%) | 1% | 1% | 0% | 7% | 1% | 0% | 1% | 3% | 3% | 3% | 1% | | | Turn Type | Prot | NA | | Prot | NA | Perm | Prot | Prot | custom | NA | | | | Protected Phases | 5 | 2 | | 1 | 6 | . • | 3 | 8 | 7 | 4 | | | | Permitted Phases | | _ | | • | | 6 | | | 148 | • | | | | Actuated Green, G (s) | 10.8 | 15.2 | | 10.6 | 15.0 | 15.0 | 10.3 | 23.4 | 44.1 | 13.2 | | | | Effective Green, g (s) | 11.8 | 16.2 | | 11.6 | 16.0 | 15.0 | 11.3 | 24.4 | 41.1 | 14.2 | | | | Actuated g/C Ratio | 0.17 | 0.23 | | 0.17 | 0.23 | 0.22 | 0.16 | 0.35 | 0.59 | 0.20 | | | | Clearance Time (s) | 5.0 | 5.0 | | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 2.0 | 5.0 | | | | Vehicle Extension (s) | 2.0 | 4.0 | | 2.0 | 4.0 | 4.0 | 2.0 | 4.0 | 2.0 | 2.0 | | | | Lane Grp Cap (vph) | 304 | 788 | | 282 | 434 | 349 | 291 | 552 | 929 | 678 | | | | v/s Ratio Prot | c0.08 | 0.10 | | 0.08 | c0.11 | 040 | 0.07 | c0.17 | 0.01 | c0.11 | | | | v/s Ratio Perm | 00.00 | 0.10 | | 0.00 | 00.11 | 0.01 | 0.01 | 00.17 | 0.05 | 00.11 | | | | v/c Ratio | 0.46 | 0.43 | | 0.45 | 0.46 | 0.04 | 0.43 | 0.48 | 0.09 | 0.55 | | | | Uniform Delay, d1 | 25.9 | 22.6 | | 26.0 | 23.0 | 21.4 | 26.1 | 17.5 | 6.1 | 24.7 | | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | Incremental Delay, d2 | 0.4 | 0.5 | | 0.4 | 1.1 | 0.1 | 0.4 | 0.9 | 0.0 | 0.6 | | | | Delay (s) | 26.3 | 23.1 | | 26.4 | 24.0 | 21.5 | 26.5 | 18.4 | 6.1 | 25.2 | | | | Level of Service | 20.0
C | C | | C | C | C C | C | В | Α | C | | | | Approach Delay (s) | U | 23.9 | | U | 24.4 | J | U | | Α. | 25.2 | | | | Approach LOS | | C | | | C | | | | | C | | | | | | U | | | U | | | | | U | | | | Intersection Summary | | | | , . | 014 0000 | 1 | <u> </u> | | | | | | | | M 2000 Control Delay | | | Н | CM 2000 | Level of S | service | | С | | | | | • | 2000 Volume to Capacity ratio | | | | | (1) (2) | | | 40.0 | | | | | Actuated Cycle Length (s) | | | 69.3 | | | t time (s) | | | 16.0 | | | | | Intersection Capacity Utiliza | ation | | 52.9% | IC | U Level | of Service | | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | ٠ | → | • | • | ← | • | • | † | <i>></i> | > | ļ | 4 | |------------------------------------|----------------------------------|--------------|-------|-------------|--------------|------------|---------|--------------|-------------|-------------|-----------|-------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ } | | ሻ | 1> | | | € 1₽ | | | 4₽ | 7 | | Traffic Volume (vph) | 72 | 198 | 44 | 71 | 159 | 19 | 66 | 160 | 68 | 64 | 279 | 177 | | Future Volume (vph) | 72 | 198 | 44 | 71 | 159 | 19 | 66 | 160 | 68 | 64 | 279 | 177 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 12 | 12 | 12 | 13 | 13 | 13 | 11 | 11 | 11 | 11 | 11 | 14 | | Total Lost time (s) | 5.0 | 5.0 | | 5.0 | 5.0 | | | 5.0 | | | 5.0 | 5.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | | 0.95 | | | 0.95 | 1.00 | | Frt | 1.00 | 0.97 | | 1.00 | 0.98 | | | 0.97 | | | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.99 | | | 0.99 | 1.00 | | Satd. Flow (prot) | 1671 | 3428 | | 1811 | 1837 | | | 3251 | | | 3365 | 1672 | | Flt Permitted | 0.47 | 1.00 | | 0.60 | 1.00 | | | 0.99 | | | 0.99 | 1.00 | | Satd. Flow (perm) | 832 | 3428 | | 1139 | 1837 | | | 3251 | | | 3365 | 1672 | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | Adj. Flow (vph) | 74 | 204 | 45 | 73 | 164 | 20 | 68 | 165 | 70 | 66 | 288 | 182 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 74 | 249 | 0 | 73 | 184 | 0 | 0 | 303 | 0 | 0 | 354 | 182 | | Heavy Vehicles (%) | 8% | 3% | 0% | 3% | 5% | 6% | 0% | 2% | 6% | 6% | 2% | 3% | | Turn Type | pm+pt | NA | | pm+pt | NA | | Split | NA | | Split | NA | pm+ov | | Protected Phases | 7 | 4 | | 3 | 8 | | 2 | 2 | | 6 | 6 | 7 | | Permitted Phases | 4 | 40.0 | | 8 | 400 | | | | | | | 6 | | Actuated Green, G (s) | 28.9 | 18.9 | | 24.9 | 16.9 | | | 20.0 | | | 20.0 | 30.0 | | Effective Green, g (s) | 28.9 | 18.9 | | 24.9 | 16.9 | | | 20.0 | | | 20.0 | 30.0 | | Actuated g/C Ratio | 0.33 | 0.22 | | 0.29 | 0.19 | | | 0.23 | | | 0.23 | 0.35 | | Clearance Time (s) | 5.0 | 5.0 | | 5.0 | 5.0 | | | 5.0 | | | 5.0 | 5.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 373 | 745 | | 388 | 357 | | | 748 | | | 774 | 673 | | v/s Ratio Prot | 0.02 | 0.07 | | 0.02 | c0.10 | | | c0.09 | | | c0.11 | c0.03 | | v/s Ratio Perm | 0.04 | 0.00 | | 0.04 | 0.50 | | | 0.44 | | | 0.40 | 0.08 | | v/c Ratio | 0.20 | 0.33 | | 0.19 | 0.52 | | | 0.41 | | | 0.46 | 0.27 | | Uniform Delay, d1 | 20.4 | 28.7
1.00 | | 23.0 | 31.3
1.00 | | | 28.4
1.00 | | | 28.8 | 20.5 | | Progression Factor | 1.00 | 0.3 | | 1.00
0.2 | 1.00 | | | 0.4 | | | 1.00 | 1.00
0.2 | | Incremental Delay, d2
Delay (s) | 20.7 | 29.0 | | 23.3 | 32.6 | | | 28.8 | | | 29.2 | 20.8 | | Level of Service | 20.7
C | 29.0
C | | 23.3
C | 32.0
C | | | 20.0
C | | | 29.2
C | 20.0
C | | Approach Delay (s) | U | 27.1 | | C | 29.9 | | | 28.8 | | | 26.3 | U | | Approach LOS | | C C | | | 23.3
C | | | 20.0
C | | | 20.5
C | | | | | U | | | U | | | U | | | U | | | | ersection Summary | | | | | | | | | | | | | | CM 2000 Control Delay | | | Н | CM 2000 | Level of S | Service | | С | | | | | | CM 2000 Volume to Capacity ratio | | | | | (| | | 00.0 | | | | | , , | tuated Cycle Length (s) | | | | um of lost | | | | 20.0 | | | | | Intersection Capacity Utiliza | ation | | 70.8% | IC | CU Level o | of Service | | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | ≭ | - | • | • | ← | €_ | 4 | 7 | / | ↓ | ✓ | | |-------------------------------|-------------|------------|-------|------|-----------|-------------|---------|-------|--------|------------|------|--| | Movement | EBL | EBT | EBR | WBL | WBT | WBR2 | NBL | NBR | NBR2 | SBT | SBR | | | Lane Configurations | ኻ | ∱ ∱ | | * | ↑ | 7 | ă | 1 | 7 | ∱ % | | | | Traffic Volume (vph) | 192 | 415 | 204 | 151 | 260 | 30 | 127 | 241 | 148 | 303 | 191 | | | Future Volume (vph) | 192 | 415 | 204 | 151 | 260 | 30 | 127 | 241 | 148 | 303 | 191 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | 5.0 | 4.0 | 4.0 | 1.0 | 4.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.95 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | Frt | 1.00 | 0.95 | | 1.00 | 1.00 | 0.85 | 1.00 | 0.85 | 0.85 | 0.94 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | | | | Satd. Flow (prot) | 1787 | 3408 | | 1687 | 1881 | 1615 | 1787 | 1568 | 1568 | 3294 | | | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | | | | Satd. Flow (perm) | 1787 | 3408 | | 1687 | 1881 | 1615 | 1787 | 1568 | 1568 | 3294 | | | | Peak-hour factor, PHF | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | | Adj. Flow (vph) | 200 | 432 | 212 | 157 | 271 | 31 | 132 | 251 | 154 | 316 | 199 | | | RTOR Reduction (vph) | 0 | 42 | 0 | 0 | 0 | 23 | 0 | 0 | 31 | 74 | 0 | | | Lane Group Flow (vph) | 200 | 603 | 0 | 157 | 271 | 8 | 132 | 251 | 123 | 441 | 0 | | | Confl. Peds. (#/hr) | 200 | 000 | - U | 107 | 211 | | 4 | 201 | 120 | 771 | 4 | | | Heavy Vehicles (%) | 1% | 1% | 0% | 7% | 1% | 0% | 1% | 3% | 3% | 3% | 1% | | | Turn Type | Prot | NA | 0 70 | Prot | NA | Perm | Prot | | custom | NA | 170 | | | Protected Phases | 5 | 2 | | 1 | 6 | 1 Cilli | 3 | 8 | 7 | 4 | | | | Permitted Phases | | _ | | ' | | 6 | | | 148 | | | | | Actuated Green, G (s) | 14.8 | 22.7 | | 13.1 | 21.0 | 21.0 | 11.7 | 28.0 | 51.3 | 16.5 | | | | Effective Green, g (s) | 15.8 | 23.7 | | 14.1 | 22.0 | 21.0 | 12.7 | 29.0 | 48.3 | 17.5 | | | | Actuated g/C Ratio | 0.19 | 0.28 | | 0.17 | 0.26 | 0.25 | 0.15 | 0.35 | 0.57 | 0.21 | | | | Clearance Time (s) | 5.0 | 5.0 | | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 2.0 | 5.0 | | | | Vehicle Extension (s) | 2.0 | 4.0 | | 2.0 | 4.0 | 4.0 | 2.0 | 4.0 | 2.0 | 2.0 | | | | Lane Grp Cap (vph) | 336 | 961 | | 283 | 492 | 403 | 270 | 541 | 901 | 686 | | | | v/s Ratio Prot | c0.11 | c0.18 | | 0.09 | 0.14 | 100 | 0.07 | c0.16 | 0.01 | c0.13 | | | | v/s Ratio Perm | 00.11 | 00.10 | | 0.00 | 0.11 | 0.00 | 0.01 | 00.10 | 0.07 | 00.10 | | | | v/c Ratio | 0.60 | 0.63 | | 0.55 | 0.55 | 0.02 | 0.49 | 0.46 | 0.14 | 0.64 | | | | Uniform Delay, d1 | 31.2 | 26.3 | | 32.1 | 26.7 | 23.7 | 32.7 | 21.4 | 8.2 | 30.4 | | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | Incremental Delay, d2 | 1.9 | 1.5 | | 1.3 | 1.6 | 0.0 | 0.5 | 0.9 | 0.0 | 1.5 | | | | Delay (s) | 33.1 | 27.8 | | 33.4 | 28.4 | 23.8 | 33.2 | 22.3 | 8.3 | 31.9 | | | | Level of Service | С | C | | С | С | C | C | C | A | С | | | | Approach Delay (s) | | 29.0 | | _ | 29.8 | | | | | 31.9 | | | | Approach LOS | | С | | | С | | | | | С | | | | Intersection Summary | | | | | | | | | | | | | | HCM 2000 Control Delay | | | 28.0 | Н | CM 2000 | Level of S | Service | | С |
		HCM 2000 Volume to Capa	acity ratio		0.62		2111 2000		3, 1,00							Actuated Cycle Length (s)	and radio		84.0	Si	um of los	st time (s)			16.0					Intersection Capacity Utiliza	ation		62.8%			of Service			В					Analysis Period (min)			15	٠,٠	3 20101	27 231 1100								Citizal Lagran Con			10												۶	→	•	•	←	•	•	†	<i>></i>	>	↓	4		-------------------------------	----------------------------------	------------	-------	-------	-------------	------------	---------	----------	-------------	-------------	----------	-------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	∱ }		ሻ	1>			4T>			41₽	7		Traffic Volume (vph)	117	376	51	59	207	43	103	225	80	191	344	162		Future Volume (vph)	117	376	51	59	207	43	103	225	80	191	344	162		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width	12	12	12	13	13	13	11	11	11	11	11	14		Total Lost time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0		Lane Util. Factor	1.00	0.95		1.00	1.00			0.95			0.95	1.00		Frt	1.00	0.98		1.00	0.97			0.97			1.00	0.85		Flt Protected	0.95	1.00		0.95	1.00			0.99			0.98	1.00		Satd. Flow (prot)	1687	3502		1793	1882			3248			3416	1524		Flt Permitted	0.32	1.00		0.39	1.00			0.99			0.98	1.00		Satd. Flow (perm)	575	3502		740	1882			3248			3416	1524		Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93		Adj. Flow (vph)	126	404	55	63	223	46	111	242	86	205	370	174		RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0		Lane Group Flow (vph)	126	459	0	63	269	0	0	439	0	0	575	174		Heavy Vehicles (%)	7%	1%	3%	4%	2%	0%	5%	1%	6%	1%	0%	13%		Turn Type	pm+pt	NA		pm+pt	NA		Split	NA		Split	NA	pm+ov		Protected Phases	7	4		3	8		2	2		6	6	7		Permitted Phases	4			8								6		Actuated Green, G (s)	33.8	23.6		29.2	21.3			22.1			24.1	34.3		Effective Green, g (s)	33.8	23.6		29.2	21.3			22.1			24.1	34.3		Actuated g/C Ratio	0.35	0.24		0.30	0.22			0.23			0.25	0.35		Clearance Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0		Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	3.0		Lane Grp Cap (vph)	315	845		306	410			734			842	613		v/s Ratio Prot	c0.04	0.13		0.02	c0.14			c0.14			c0.17	0.03		v/s Ratio Perm	0.10			0.04								0.08		v/c Ratio	0.40	0.54		0.21	0.66			0.60			0.68	0.28		Uniform Delay, d1	23.3	32.3		25.0	34.9			33.8			33.3	22.8		Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	1.00		Incremental Delay, d2	0.8	0.7		0.3	3.8			1.3			2.3	0.3		Delay (s)	24.1	33.1		25.3	38.6			35.1			35.6	23.1		Level of Service	С	C		С	D			D			D	С		Approach Delay (s)		31.1			36.1			35.1			32.7			Approach LOS		С			D			D			С			Intersection Summary	·														CM 2000 Control Delay			Н	CM 2000	Level of S	Service		С						CM 2000 Volume to Capacity ratio													Actuated Cycle Length (s)	ctuated Cycle Length (s)				um of lost				20.0					Intersection Capacity Utiliza	ation		71.8%	IC	CU Level of	of Service			С					Analysis Period (min)			15												_ #	→	•	•	•	€_	4	7	<i>></i>	↓	4			--------------------------------	------------	------------	-------	------	----------	------------	---------	-------	-------------	----------	------	--		Movement	EBL	EBT	EBR	WBL	WBT	WBR2	NBL	NBR	NBR2	SBT	SBR			Lane Configurations	¥	∱ }		, N	†	7	ă	7	7	ħβ				Traffic Volume (vph)	153	277	186	139	220	66	135	287	151	303	166			Future Volume (vph)	153	277	186	139	220	66	135	287	151	303	166			Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			Total Lost time (s)	4.0	4.0		4.0	4.0	5.0	4.0	4.0	1.0	4.0				Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	1.00	1.00	0.95				Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	0.99				Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00				Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.85	0.85	0.95				Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	1.00				Satd. Flow (prot)	1787	3372		1687	1881	1615	1787	1568	1568	3312				Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	1.00				Satd. Flow (perm)	1787	3372		1687	1881	1615	1787	1568	1568	3312				Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97			Adj. Flow (vph)	158	286	192	143	227	68	139	296	156	312	171			RTOR Reduction (vph)	0	85	0	0	0	53	0	0	62	55	0			Lane Group Flow (vph)	158	393	0	143	227	15	139	296	94	428	0			Confl. Peds. (#/hr)							4				4			Heavy Vehicles (%)	1%	1%	0%	7%	1%	0%	1%	3%	3%	3%	1%			Turn Type	Prot	NA		Prot	NA	Perm	Prot	Prot	custom	NA				Protected Phases	5	2		1	6		3	8	7	4				Permitted Phases						6			148					Actuated Green, G (s)	12.1	16.9		11.9	16.7	16.7	11.6	26.6	48.7	15.2				Effective Green, g (s)	13.1	17.9		12.9	17.7	16.7	12.6	27.6	45.7	16.2				Actuated g/C Ratio	0.17	0.24		0.17	0.23	0.22	0.17	0.37	0.60	0.21				Clearance Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	2.0	5.0				Vehicle Extension (s)	2.0	4.0		2.0	4.0	4.0	2.0	4.0	2.0	2.0				Lane Grp Cap (vph)	309	798		287	440	356	297	572	947	709				v/s Ratio Prot	c0.09	0.12		0.08	c0.12		0.08	c0.19	0.01	c0.13				v/s Ratio Perm						0.01			0.05					v/c Ratio	0.51	0.49		0.50	0.52	0.04	0.47	0.52	0.10	0.60				Uniform Delay, d1	28.3	24.9		28.4	25.2	23.2	28.5	18.8	6.3	26.8				Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00				Incremental Delay, d2	0.6	0.7		0.5	1.4	0.1	0.4	1.1	0.0	1.0				Delay (s)	28.9	25.6		28.9	26.6	23.2	28.9	19.8	6.3	27.8				Level of Service	С	С		С	С	С	С	В	Α	С				Approach Delay (s)		26.4			26.8					27.8				Approach LOS		С			С					С				Intersection Summary														HCM 2000 Control Delay			24.6	H	CM 2000	Level of S	Service		С					HCM 2000 Volume to Capac	city ratio		0.56											Actuated Cycle Length (s)			75.6			t time (s)			16.0					Intersection Capacity Utilizat	tion		57.5%	IC	U Level	of Service			В					Analysis Period (min)			15												٠	→	•	•	—	•	1	†	/	/	ļ			---------------------------------	----------------------	------------	-------	-----------	-------------	------------	---------	-----------	----------	----------	-----------	-------------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	∱ ∱		ሻ	₽			र्सी			-4↑	7		Traffic Volume (vph)	81	223	50	80	179	21	74	180	77	72	314	199		Future Volume (vph)	81	223	50	80	179	21	74	180	77	72	314	199		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width	12	12	12	13	13	13	11	11	11	11	11	14		Total Lost time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0		Lane Util. Factor	1.00	0.95		1.00	1.00			0.95			0.95	1.00		Frt	1.00	0.97		1.00	0.98			0.97			1.00	0.85		Flt Protected	0.95	1.00		0.95	1.00			0.99			0.99	1.00		Satd. Flow (prot)	1671	3426		1811	1838			3251			3365	1672		Flt Permitted	0.43	1.00		0.58	1.00			0.99			0.99	1.00		Satd. Flow (perm)	759	3426		1103	1838			3251			3365	1672		Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		Adj. Flow (vph)	84	230	52	82	185	22	76	186	79	74	324	205		RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0		Lane Group Flow (vph)	84	282	0	82	207	0	0	341	0	0	398	205		Heavy Vehicles (%)	8%	3%	0%	3%	5%	6%	0%	2%	6%	6%	2%	3%		Turn Type	pm+pt	NA		pm+pt	NA		Split	NA		Split	NA	pm+ov		Protected Phases	7	4		3	8		2	2		6	6	7		Permitted Phases	4			8								6		Actuated Green, G (s)	29.6	19.6		25.6	17.6			20.0			20.3	30.3		Effective Green, g (s)	29.6	19.6		25.6	17.6			20.0	
20.3	30.3		Actuated g/C Ratio	0.34	0.22		0.29	0.20			0.23			0.23	0.34		Clearance Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0		Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	3.0		Lane Grp Cap (vph)	359	763		385	368			739			777	671		v/s Ratio Prot	0.03	0.08		0.02	c0.11			c0.10			c0.12	c0.03		v/s Ratio Perm	0.05	0.07		0.04	0.50			0.40			0.54	0.09		v/c Ratio	0.23	0.37		0.21	0.56			0.46			0.51	0.31		Uniform Delay, d1	20.6	28.9		23.1	31.7			29.3			29.5	21.1		Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	1.00		Incremental Delay, d2	0.3	0.3		0.3	2.0 33.6			0.5			0.6	0.3 21.4		Delay (s) Level of Service	20.9	29.2		23.4 C				29.8			30.1 C	21.4 C			С	C 27.3		C	C 30.7			C 29.8			27.1	C		Approach Delay (s) Approach LOS		21.3 C			30.7 C			29.0 C			27.1 C					C			C			C			U			Intersection Summary									_					HCM 2000 Control Delay	M 2000 Control Delay		28.4	Н	CM 2000	Level of S	Service		С					HCM 2000 Volume to Capa	acity ratio		0.49											Actuated Cycle Length (s)			87.9		um of lost				20.0					Intersection Capacity Utiliz	ation		70.8%	IC	CU Level	of Service			С					Analysis Period (min)			15										c Critical Lane Group		- ≉	→	•	•	•	€_	4	7	<i>></i>	↓	4			--------------------------------	------------	-------------	-------	------	----------	------------	---------	-------	-------------	------------	------	--		Movement	EBL	EBT	EBR	WBL	WBT	WBR2	NBL	NBR	NBR2	SBT	SBR			Lane Configurations	¥	∱ 1≽		Į,	†	7	ă	7	7	∱ ∱				Traffic Volume (vph)	216	468	230	170	293	34	143	272	167	342	215			Future Volume (vph)	216	468	230	170	293	34	143	272	167	342	215			Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			Total Lost time (s)	4.0	4.0		4.0	4.0	5.0	4.0	4.0	1.0	4.0				Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	1.00	1.00	0.95				Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	0.99				Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00				Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.85	0.85	0.94				Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	1.00				Satd. Flow (prot)	1787	3409		1687	1881	1615	1787	1568	1568	3293				FIt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	1.00				Satd. Flow (perm)	1787	3409		1687	1881	1615	1787	1568	1568	3293				Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96			Adj. Flow (vph)	225	488	240	177	305	35	149	283	174	356	224			RTOR Reduction (vph)	0	41	0	0	0	26	0	0	21	74	0			Lane Group Flow (vph)	225	687	0	177	305	9	149	283	153	506	0			Confl. Peds. (#/hr)							4				4			Heavy Vehicles (%)	1%	1%	0%	7%	1%	0%	1%	3%	3%	3%	1%			Turn Type	Prot	NA		Prot	NA	Perm	Prot	Prot	custom	NA				Protected Phases	5	2		1	6		3	8	7	4				Permitted Phases						6			148					Actuated Green, G (s)	16.7	26.7		14.7	24.7	24.7	13.0	31.9	56.7	19.0				Effective Green, g (s)	17.7	27.7		15.7	25.7	24.7	14.0	32.9	53.7	20.0				Actuated g/C Ratio	0.19	0.30		0.17	0.28	0.26	0.15	0.35	0.57	0.21				Clearance Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	2.0	5.0				Vehicle Extension (s)	2.0	4.0		2.0	4.0	4.0	2.0	4.0	2.0	2.0				Lane Grp Cap (vph)	338	1011		283	517	427	267	552	901	705				v/s Ratio Prot	c0.13	c0.20		0.10	0.16		0.08	c0.18	0.01	c0.15				v/s Ratio Perm						0.01			0.09					v/c Ratio	0.67	0.68		0.63	0.59	0.02	0.56	0.51	0.17	0.72				Uniform Delay, d1	35.1	28.9		36.1	29.3	25.4	36.8	23.9	9.3	34.1				Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00				Incremental Delay, d2	3.8	2.0		3.1	2.0	0.0	1.4	1.1	0.0	2.9				Delay (s)	38.9	30.9		39.2	31.3	25.4	38.3	25.0	9.4	37.0				Level of Service	D	С		D	С	С	D	С	Α	D				Approach Delay (s)		32.8			33.6					37.0				Approach LOS		С			С					D				Intersection Summary														HCM 2000 Control Delay			31.8	H	CM 2000	Level of S	Service		С					HCM 2000 Volume to Capac	city ratio		0.69											Actuated Cycle Length (s)			93.4			t time (s)			16.0					Intersection Capacity Utilizat	ion		68.6%	IC	U Level	of Service			С					Analysis Period (min)			15												۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	4		-------------------------------	----------------------------------	------------	---------------	-------	-------------	------------	---------	-------------	----------	-------------	-------	-------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	∱ }		ሻ	ĵ.			€ 1Ъ			4₽	7		Traffic Volume (vph)	132	424	57	66	233	48	116	254	90	215	388	183		Future Volume (vph)	132	424	57	66	233	48	116	254	90	215	388	183		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width	12	12	12	13	13	13	11	11	11	11	11	14		Total Lost time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0		Lane Util. Factor	1.00	0.95		1.00	1.00			0.95			0.95	1.00		Frt	1.00	0.98		1.00	0.97			0.97			1.00	0.85		Flt Protected	0.95	1.00		0.95	1.00			0.99			0.98	1.00		Satd. Flow (prot)	1687	3503		1793	1882			3248			3416	1524		Flt Permitted	0.27	1.00		0.34	1.00			0.99			0.98	1.00		Satd. Flow (perm)	487	3503		635	1882			3248			3416	1524		Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93		Adj. Flow (vph)	142	456	61	71	251	52	125	273	97	231	417	197		RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0		Lane Group Flow (vph)	142	517	0	71	303	0	0	495	0	0	648	197		Heavy Vehicles (%)	7%	1%	3%	4%	2%	0%	5%	1%	6%	1%	0%	13%		Turn Type	pm+pt	NA		pm+pt	NA		Split	NA		Split	NA	pm+ov		Protected Phases	7	4		3	8		2	2		6	6	7		Permitted Phases	4			8								6		Actuated Green, G (s)	36.9	26.6		31.9	24.1			24.2			26.7	37.0		Effective Green, g (s)	36.9	26.6		31.9	24.1			24.2			26.7	37.0		Actuated g/C Ratio	0.35	0.25		0.30	0.23			0.23			0.25	0.35		Clearance Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0		Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	3.0		Lane Grp Cap (vph)	288	884		278	430			746			866	607		v/s Ratio Prot	c0.05	0.15		0.02	c0.16			c0.15			c0.19	0.03		v/s Ratio Perm	0.12			0.06								0.10		v/c Ratio	0.49	0.58		0.26	0.70			0.66			0.75	0.32		Uniform Delay, d1	25.3	34.5		26.9	37.3			36.9			36.2	25.0		Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	1.00		Incremental Delay, d2	1.3	1.0		0.5	5.2			2.2			3.6	0.3		Delay (s)	26.7	35.5		27.3	42.5			39.1			39.8	25.3		Level of Service	С	D		С	D			D			D	С		Approach Delay (s)		33.6			39.6			39.1			36.4			Approach LOS		С			D			D			D			Intersection Summary	•														CM 2000 Control Delay			Н	CM 2000	Level of S	Service		D						CM 2000 Volume to Capacity ratio								05.5					, ,	ctuated Cycle Length (s)				um of lost				20.0					Intersection Capacity Utiliza	ation		73.8%	IC	CU Level of	of Service			D					Analysis Period (min)			15										♥ Site: 101 [Federal Street/River Street Noon Peak -EBL-WBL- NBR-SBR - FINAL (Site Folder: Noon Peak -2025)] Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout	Lane Use a	and Per	forman	се												---------------------	-----------------------	-----------	-------	--------------	---------------	----------------	---------------------	------------------------	--------------	----------------	----------------	--------------	-----------------			DEM FLO [Total	WS HV]	Сар.	Deg. Satn	Lane Util.	Aver. Delay	Level of Service	50% BA QUE [Veh	UE Dist]	Lane Config	Lane Length	Cap. Adj.	Prob. Block.		South: River	veh/h	% NB	veh/h	v/c	%	sec	_	_	ft	_	ft	%	%		Lane 1 ^d	388	2.4	917	0.423	100	6.4	LOS A	0.8	21.0	Full	200	0.0	0.0																																																													
									Lane 2	138	3.0	837	0.165	100	4.9	LOSA	0.3	6.5	Short	100	0.0	NA		Approach	526	2.5		0.423		6.0	LOS A	0.8	21.0						East: Federa	al Street.	WB													Lane 1	141	6.4	792	0.178	100	9.7	LOSA	0.3	7.1	Short	100	0.0	NA		Lane 2 ^d	262	8.0	836	0.313	100	5.5	LOSA	0.6	13.9	Full	300	0.0	0.0		Approach	403	2.7		0.313		7.0	LOS A	0.6	13.9						North: River	Street S	SB													Lane 1 ^d	349	2.6	920	0.380	100	5.9	LOS A	0.7	17.4	Full	300	0.0	0.0		Lane 2	152	1.0	859	0.177	100	5.1	LOSA	0.3	7.0	Short	100	0.0	NA		Approach	501	2.1		0.380		5.6	LOSA	0.7	17.4						West: Feder	al Street	EB													Lane 1	141	1.0	882	0.160	100	9.2	LOSA	0.3	6.5	Short	100	0.0	NA		Lane 2 ^d	424	0.6	885	0.479	100	6.1	LOSA	1.1	27.7	Full	350	0.0	0.0		Approach	565	0.7		0.479		6.9	LOSA	1.1	27.7						Intersection	1995	1.9		0.479		6.4	LOSA	1.1	27.7					Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Geometric Delay is included). Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.	Approach L	ane Flo	ws (ve	h/h)										----------------------------	----------	---------	---------	---------	-------	-----	---------------	---------------------	-----	----------------------	--------------------		South: River	Street N	В											Mov. From S To Exit:	U S	L2 W	T1 N	R2 E	Total	%HV	Cap. veh/h	Deg. Satn v/c		Prob. SL Ov. %	Ov. Lane No.		Lane 1	1	124	263	-	388	2.4	917	0.423	100	NA	NA		Lane 2	-	-	-	138	138	3.0	837	0.165	100	0.0	1		Approach	1	124	263	138	526	2.5		0.423						----------------	----------	-----	---------	---------	-------	-----	---------------	---------------------	--------------------	----------------------	--------------------	--		East: Federal	Street.	WB												Mov. From E	U	L2	T1	R2	Total	%HV	Сар.	Deg. Satn		Prob. SL Ov.	Ov. Lane			To Exit:	E	S	W	N			veh/h	v/c	%	%	No.			Lane 1	14	127	-	-	141	6.4	792	0.178	100	0.0	2			Lane 2	-	-	201	61	262	0.8	836	0.313	100	NA	NA			Approach	14	127	201	61	403	2.7		0.313						North: River S	Street S	В												Mov. From N	U	L2	T1	R2	Total	%HV	Cap. veh/h	Deg. Satn		Prob. SL Ov.	Ov. Lane			To Exit:	N	Е	S	W			ven/n	v/c	%	%	No.			Lane 1	33	39	277	-	349	2.6	920	0.380	100	NA	NA			Lane 2	-	-	-	152	152	1.0	859	0.177	100	0.0	1			Approach	33	39	277	152	501	2.1		0.380						West: Federa	I Street	EB												Mov. From W	U	L2	T1	R2	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.			To Exit:	W	N	Е	S										Lane 1	1	140	-	-	141	1.0	882	0.160	100	0.0	2			Lane 2	-	-	254	170	424	0.6	885	0.479	100	NA	NA			Approach	1	140	254	170	565	0.7		0.479							Total	%HV	Deg.Sat	n (v/c)										Intersection	1995	1.9		0.479										Merge Analysis											---	----	-------------------------------	-----------------	-------------------------------------	-------	-----------------------------	-------------------	----------------------	-----------------------		Ex Lan Numbe	ie	Short Lane Length ft	Opng in Lane	Opposing Flow Rate veh/h pcu/	e Gap	Follow-up Headway sec	Capacity veh/h	Min. Delay sec	Merge Delay sec		South Exit: River Street N Merge Type: Not Applied	В										Full Length Lane	1	Merge A	Analysis	not applied	•						East Exit: Federal Street. \ Merge Type: Not Applied	ΝB										Full Length Lane	1	Merge A	Analysis	not applied	•						North Exit: River Street St Merge Type: Not Applied	В										Full Length Lane	1	Merge A	Analysis	not applied	•						West Exit: Federal Street Merge Type: Not Applied	EB										Full Length Lane	1	Merge A	Analysis	not applied						**♥** Site: 101 [Federal Street/River Street PM Peak -EBL-WBL-NBR- SBR FINAL (Site Folder: PM Peak - 2025)] Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout	Lane Use a	and Per	forman	ce												---------------------	------------	------------	-------	--------------	---------------	----------------	---------------------	------------------------	-------------	----------------	----------------	--------------	-----------------			[Total	DWS HV]	Cap.	Deg. Satn	Lane Util.	Aver. Delay	Level of Service	50% BA QUE [Veh	UE Dist]	Lane Config	Lane Length	Cap. Adj.	Prob. Block.		South: River	veh/h	% NB	veh/h	v/c	%	sec			ft		ft	%	%					70-	0.504	400				00 =		200				Lane 1 ^d	393	4.0	735	0.534	100	9.0	LOSA	1.1	29.5	Full	200	0.0	0.0		Lane 2	157	5.0	658	0.239	100	6.4	LOSA	0.4	9.2	Short	100	0.0	NA		Approach	550	4.3		0.534		8.2	LOS A	1.1	29.5						East: Federa	al Street.	WB													Lane 1	168	5.8	754	0.223	100	10.0	LOS B	0.3	9.0	Short	100	0.0	NA		Lane 2 ^d	309	1.3	787	0.392	100	6.2	LOSA	0.8	19.0	Full	300	0.0	0.0		Approach	477	2.9		0.392		7.6	LOS A	8.0	19.0						North: River	Street S	SB													Lane 1 ^d	385	2.0	838	0.459	100	6.8	LOSA	0.9	23.9	Full	300	0.0	0.0		Lane 2	203	3.0	757	0.268	100	5.9	LOSA	0.4	11.0	Short	100	0.0	NA		Approach	588	2.3		0.459		6.5	LOS A	0.9	23.9						West: Feder	al Street	EB													Lane 1	205	1.0	831	0.247	100	9.7	LOSA	0.4	10.4	Short	100	0.0	NA		Lane 2 ^d	659	1.0	831	0.792	100	11.5	LOS B	3.3	83.5	Full	350	0.0	0.0		Approach	864	1.0		0.792		11.0	LOS B	3.3	83.5						Intersection	2479	2.4		0.792		8.7	LOSA	3.3	83.5					Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Geometric Delay is included). Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.	Approach L	ane Flo	ws (ve	h/h)										----------------------------	----------	---------	---------	---------	-------	-----	---------------	---------------------	-----	----------------------	--------------------		South: River	Street N	В											Mov. From S To Exit:	U S	L2 W	T1 N	R2 E	Total	%HV	Cap. veh/h	Deg. Satn v/c		Prob. SL Ov. %	Ov. Lane No.		Lane 1	1	135	256	-	393	4.0	735	0.534	100	NA	NA		Lane 2	-	-	-	157	157	5.0	658	0.239	100	0.0	1		Approach	1	135	256	157	550	4.3		0.534						----------------	-----------	-----	---------	---------	-------	-----	---------------	---------------------	--------------------	----------------------	--------------------	--		East: Federal	Street. \	WB												Mov. From E	U	L2	T1	R2	Total	%HV	Сар.	Deg. Satn		Prob. SL Ov.	Ov. Lane			To Exit:	Е	S	W	Ν			veh/h	v/c	%	%	No.			Lane 1	7	161	-	-	168	5.8	754	0.223	100	0.0	2			Lane 2	-	-	277	32	309	1.3	787	0.392	100	NA	NA			Approach	7	161	277	32	477	2.9		0.392						North: River S	Street S	В												Mov. From N	U	L2	T1	R2	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.			To Exit:	N	Е	S	W			ven/m	V/C	%	%	INO.			Lane 1	16	47	322	-	385	2.0	838	0.459	100	NA	NA			Lane 2	-	-	-	203	203	3.0	757																																																																																																																																																																																																																																																																																																																																																																																																												
0.268	100	0.0	1			Approach	16	47	322	203	588	2.3		0.459						West: Federa	I Street	EB												Mov. From W	U	L2	T1	R2	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.			To Exit:	W	N	E	S	005	4.0								Lane 1	1	204	-	-	205	1.0	831	0.247	100	0.0	2			Lane 2	-	-	441	217	659	1.0	831	0.792	100	NA	NA			Approach	1	204	441	217	864	1.0		0.792							Total	%HV	Deg.Sat	n (v/c)										Intersection	2479	2.4		0.792										Merge Analysis													---	----	-------------------------------	-----------------	----------------------------------	------	----------	-------------------------------------	----------	------------------	----------------------	-----------------------		Ex Lan Numbe	е	Short Lane Length ft	Opng in Lane	Opposin Flow Rat veh/h pcu	e Ga	ıp Headv	-up Lar vay Flo Ra sec veh	w ite	apacity veh/h	Min. Delay sec	Merge Delay sec		South Exit: River Street N Merge Type: Not Applied	В												Full Length Lane	1	Merge A	Analysis ı	not applied	d.								East Exit: Federal Street. \ Merge Type: Not Applied	ΝB												Full Length Lane	1	Merge A	Analysis ı	not applied	d.								North Exit: River Street SI Merge Type: Not Applied	В												Full Length Lane	1	Merge A	Analysis ı	not applied	d.								West Exit: Federal Street Merge Type: Not Applied	EB												Full Length Lane	1	Merge A	Analysis ı	not applied	d.							♥ Site: 101 [Federal Street/River Street Noon Peak -EBL-WBL- NBR-SBR-FINAL (Site Folder: Noon Peak - 2045)] Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout	Lane Use a	and Per	forman	ce												---------------------	-----------------------	--------	-------	--------------	---------------	----------------	---------------------	-------------------------	------	----------------	----------------	-----	-----------------			DEM FLC [Total		Сар.	Deg. Satn	Lane Util.	Aver. Delay	Level of Service	50% BA0 QUE [Veh		Lane Config	Lane Length		Prob. Block.			veh/h	% -	veh/h	v/c	%	sec			ft		ft	%	%		South: River	Street I	NB													Lane 1 ^d	436	2.4	870	0.501	100	7.4	LOSA	1.1	28.3	Full	200	0.0	0.0		Lane 2	156	3.0	791	0.197	100	5.3	LOSA	0.3	7.8	Short	100	0.0	NA		Approach	592	2.5		0.501		6.8	LOSA	1.1	28.3						East: Federa	al Street.	WB													Lane 1	160	6.4	742	0.215	100	10.2	LOS B	0.3	8.6	Short	100	0.0	NA		Lane 2 ^d	295	8.0	784	0.376	100	6.3	LOSA	0.7	17.9	Full	300	0.0	0.0		Approach	455	2.7		0.376		7.6	LOSA	0.7	17.9						North: River	Street S	SB													Lane 1 ^d	394	2.6	873	0.451	100	6.7	LOS A	0.9	23.4	Full	300	0.0	0.0		Lane 2	171	1.0	812	0.211	100	5.4	LOSA	0.3	8.5	Short	100	0.0	NA		Approach	565	2.1		0.451		6.3	LOSA	0.9	23.4						West: Feder	al Street	EB													Lane 1	159	1.0	831	0.191	100	9.6	LOSA	0.3	7.8	Short	100	0.0	NA		Lane 2 ^d	477	0.6	834	0.572	100	7.5	LOSA	1.5	38.0	Full	350	0.0	0.0		Approach	636	0.7		0.572		8.0	LOSA	1.5	38.0						Intersection	2247	1.9		0.572		7.2	LOSA	1.5	38.0					Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Geometric Delay is included). Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.	Approach L	ane Flo	ws (ve	h/h)										----------------------------	----------	---------	---------	---------	-------	-----	---------------	---------------------	-----	----------------------	--------------------		South: River	Street N	В											Mov. From S To Exit:	U	L2 W	T1 N	R2 F	Total	%HV	Cap. veh/h	Deg. Satn v/c		Prob. SL Ov. %	Ov. Lane No.		Lane 1	1	139	296	-	436	2.4	870	0.501	100	NA	NA		Lane 2	-	-	-	156	156	3.0	791	0.197	100	0.0	1		Approach	1	139	296	156	592	2.5		0.501						----------------------------	----------	---------	---------	----------	-------	-----	---------------	---------------------	--------------------	----------------------	--------------------	--		East: Federal	Street.	WB												Mov. From E	U	L2	T1	R2	Total	%HV	Cap.	Deg. Satn		Prob. SL Ov.	Ov. Lane			To Exit:	Е	S	W	Ν			veh/h	v/c	%	%	No.			Lane 1	16	143	-	-	160	6.4	742	0.215	100	0.0	2			Lane 2	-	-	227	68	295	8.0	784	0.376	100	NA	NA			Approach	16	143	227	68	455	2.7		0.376						North: River S	Street S	В												Mov. From N	U	L2	T1	R2	Total	%HV	Cap. veh/h	Deg. Satn		Prob. SL Ov.	Ov. Lane			To Exit:	N	Е	S	W			ven/m	v/c	%	%	No.			Lane 1	37	44	312	-	394	2.6	873	0.451	100	NA	NA			Lane 2	-	-	-	171	171	1.0	812	0.211	100	0.0	1			Approach	37	44	312	171	565	2.1		0.451						West: Federa	l Street	EB												Mov. From W To Exit:	U W	L2 N	T1 E	R2 S	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.			Lane 1	1	158	-	-	159	1.0	831	0.191	100	0.0	2			Lane 2	-	-	286	- 192	477	0.6	834	0.191	100	NA	NA			Approach	1	158	286	192	636	0.7	304	0.572	100	1471	1471				Total	%HV	Deg.Sat	n (v/c)										Intersection	2247	1.9		0.572										Merge Analysis													---	----	-------------------------------	-----------------	----------------------------------	------	----------	-------------------------------------	----------	------------------	----------------------	-----------------------		Ex Lan Numbe	е	Short Lane Length ft	Opng in Lane	Opposin Flow Rat veh/h pcu	e Ga	ıp Headv	-up Lar vay Flo Ra sec veh	w ite	apacity veh/h	Min. Delay sec	Merge Delay sec		South Exit: River Street N Merge Type: Not Applied	В												Full Length Lane	1	Merge A	Analysis ı	not applied	d.								East Exit: Federal Street. \ Merge Type: Not Applied	ΝB												Full Length Lane	1	Merge A	Analysis ı	not applied	d.								North Exit: River Street SI Merge Type: Not Applied	В												Full Length Lane	1	Merge A	Analysis ı	not applied	d.								West Exit: Federal Street Merge Type: Not Applied	EB												Full Length Lane	1	Merge A	Analysis ı	not applied	d.							**♥** Site: 101 [Federal Street/River Street PM Peak -EBL-WBL-NBR- SBR-FINAL (Site Folder: PM Peak - 2045)] Federal Street/River Street ETC+20 2045 PM Peak Site Category: (None) Roundabout	Lane Use a	and Per	forman	ce												---------------------	------------	--------------------	-------	--------------	---------------	----------------	---------------------	-------------------------	-------	----------------	----------------	-----	-----------------				IAND DWS HV]	Сар.	Deg. Satn	Lane Util.	Aver. Delay	Level of Service	50% BA0 QUE [Veh		Lane Config	Lane Length		Prob. Block.			veh/h	% -	veh/h	v/c	%	sec			ft		ft	%	%		South: River	Street	NB													Lane 1 ^d	443	4.0	681	0.650	100	11.1	LOS B	1.6	41.5	Full	200	0.0	0.0		Lane 2	178	5.0	605	0.294	100	7.1	LOSA	0.4	11.5	Short	100	0.0	NA		Approach	620	4.3		0.650		10.0	LOSA	1.6	41.5						East: Federa	al Street.	WB													Lane 1	189	5.8	702	0.270	100	10.6	LOS B	0.4	11.0	Short	100	0.0	NA		Lane 2 ^d	348	1.4	732	0.475	100	7.5	LOSA	1.0	25.6	Full	300	0.0	0.0		Approach	537	2.9		0.475		8.6	LOSA	1.0	25.6						North: River	Street S	SB													Lane 1 ^d	435	2.0	787	0.553	100	8.2	LOSA	1.3	32.6	Full	300	0.0	0.0		Lane 2	229	3.0	707	0.324	100	6.5	LOSA	0.5	13.5	Short	100	0.0	NA		Approach	664	2.3		0.553		7.6	LOSA	1.3	32.6																																																																																																																																																																																																																																																																																																																																																																														
					West: Feder	al Street	EB													Lane 1	231	1.0	778	0.297	100	10.2	LOS B	0.5	12.7	Short	100	0.0	NA		Lane 2 ^d	743	1.0	778	0.954	100	24.4	LOS C	7.0	176.2	Full	350	0.0	12.1		Approach	973	1.0		0.954		21.1	LOS C	7.0	176.2						Intersection	2795	2.4		0.954		13.0	LOS B	7.0	176.2					Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Geometric Delay is included). Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.	Approach L	ane Flo	ws (ve	h/h)										----------------------------	----------	---------	---------	---------	-------	-----	---------------	---------------------	-----	----------------------	--------------------		South: River	Street N	В											Mov. From S To Exit:	U S	L2 W	T1 N	R2 E	Total	%HV	Cap. veh/h	Deg. Satn v/c		Prob. SL Ov. %	Ov. Lane No.		Lane 1	1	152	289	-	443	4.0	681	0.650	100	NA	NA		Lane 2	-	-	-	178	178	5.0	605	0.294	100	0.0	1		Approach	1	152	289	178	620	4.3		0.650						----------------	-----------	-----	---------	---------	-------	-----	---------------	---------------------	--------------------	----------------------	--------------------	--		East: Federal	Street. \	WB												Mov. From E	U	L2	T1	R2	Total	%HV	Сар.	Deg. Satn		Prob. SL Ov.	Ov. Lane			To Exit:	E	S	W	Ν			veh/h	v/c	%	%	No.			Lane 1	9	181	-	-	189	5.8	702	0.270	100	0.0	2			Lane 2	-	-	312	36	348	1.4	732	0.475	100	NA	NA			Approach	9	181	312	36	537	2.9		0.475						North: River S	Street S	В												Mov. From N	U	L2	T1	R2	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.			To Exit:	N	Е	S	W			vei//ii	V/C	70	70	INO.			Lane 1	18	53	364	-	435	2.0	787	0.553	100	NA	NA			Lane 2	-	-	-	229	229	3.0	707	0.324	100	0.0	1			Approach	18	53	364	229	664	2.3		0.553						West: Federa	I Street	EB												Mov. From W	U	L2	T1	R2	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.			To Exit:	W	N	Е	S										Lane 1	1	230	-	-	231	1.0	778	0.297	100	0.0	2			Lane 2	-	-	498	245	743	1.0	778	0.954	100	NA	NA			Approach	1	230	498	245	973	1.0		0.954							Total	%HV	Deg.Sat	n (v/c)										Intersection	2795	2.4		0.954										Merge Analysis												---	----	-------------------------------	-----------------	---------------------------------	--------	-------------------------	--	---------------------	----------------------	-----------------------		E> Lar Numbe	ie	Short Lane Length ft	Opng in Lane	Opposin Flow Ra veh/h pcu	te Gap) Headwa ['] y		Deg. Satn v/c	Min. Delay sec	Merge Delay sec		South Exit: River Street N Merge Type: Not Applied	В											Full Length Lane	1	Merge A	Analysis ı	not applie	d.							East Exit: Federal Street. \ Merge Type: Not Applied	WB											Full Length Lane	1	Merge A	Analysis ı	not applie	d.							North Exit: River Street Sl Merge Type: Not Applied	В											Full Length Lane	1	Merge A	Analysis ı	not applie	d.							West Exit: Federal Street Merge Type: Not Applied	EB											Full Length Lane	1	Merge A	Analysis ı	not applie	d.						▼ Site: 101 [Federal Street/6th Avenue Noon Peak - NBL-SBL - FINAL - Single Lane (Site Folder: Noon Peak - 2025)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200 Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout	Lane Use	and P	erfor	mance														---------------------	---------------	----------	---------------	----------	-------	--------------	---------------	----------------	---------------------	--------------	--------------	----------------	----------------	------------------	-----			Dem Flov	WS	Arrival		Сар.	Deg. Satn	Lane Util.	Aver. Delay	Level of Service	50% B Que	eue	Lane Config	Lane Length	Cap. F Adj. B				[Total veh/h	HV] %	[Total veh/h	HV] %	veh/h	v/c	%	sec		[Veh	Dist] ft		ft	%	%		South: 6th	Avenue	NB															Lane 1 ^d	304	2.5	304	2.5	845	0.360	100	6.3	LOSA	0.7	18.1	Full	200	0.0	0.0		Approach	304	2.5	304	2.5		0.360		6.3	LOSA	0.7	18.1						East: Fede	ral Stre	et. WE	3														Lane 1 ^d	258	4.5	258	4.5	901	0.286	100	6.0	LOSA	0.5	13.9	Full	300	0.0	0.0		Approach	258	4.5	258	4.5		0.286		6.0	LOSA	0.5	13.9						North: 6th	Avenue	SB															Lane 1 ^d	537	2.8	537	2.8	920	0.584	100	7.0	LOSA	1.8	45.7	Full	300	0.0	0.0		Approach	537	2.8	537	2.8		0.584		7.0	LOSA	1.8	45.7						West: Fed	eral Stre	et EE	3														Lane 1 ^d	406	3.4	406	3.4	839	0.484	100	7.8	LOS A	1.2	30.1	Full	350	0.0	0.0		Approach	406	3.4	406	3.4		0.484		7.8	LOSA	1.2	30.1						All Vehicles	1505	3.2	1505	3.2		0.584		6.9	LOSA	1.8	45.7					Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included). Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap. Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.	Approach L	ane Flo	ws (v	eh/h)										----------------------------	-----------	---------	---------	---------	-------	-----	---------------	---------------------	-----------------------------------	--------------------	--		South: 6th Ave	enue Ni	3											Mov. From S To Exit:	U S	L2 W	T1 N	R2 E	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. % %	Ov. Lane No.			Lane 1	1	68	165	70	304	2.5	845	0.360	100 NA	NA			Approach	1	68	165	70	304	2.5		0.360					East: Federal	Street. \	ΝB											Mov. From E To Exit:	U E	L2 S	T1 W	R2 N	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. % %	Ov. Lane No.			Lane 1	1	73	164	20	258	4.5	901	0.286	100	NA	NA			--------------------	-----------	-------	--------	---------	-------	-----	---------------	-------------	--------------	-------------	-------------	--		Approach	1	73	164	20	258	4.5		0.286						North: 6th Av	enue S	В												Mov.	U	L2	T1	R2	Total	%HV		Deg.		Prob.	Ov.			From N To Exit:	N	Е	S	W			Cap. veh/h	Satn v/c	Util. S %	SL Ov. %	Lane No.			Lane 1	1	66	288	182	537	2.8	920	0.584	100	NA	NA			Approach	1	66	288	182	537	2.8		0.584						West: Federa	al Street	EB												Mov.	U	L2	T1	R2	Total	%HV	C a ia	Deg.		Prob.	Ov.			From W To Exit:	W	N	Е	S			Cap. veh/h	Satn v/c	Util. 8 %	SL Ov. %	Lane No.			Lane 1	43	74	243	45	406	3.4	839	0.484	100	NA	NA			Approach	43	74	243	45	406	3.4		0.484							Total	%HV [eg.Sat	n (v/c)										All Vehicles	1505	3.2		0.584									Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.	Merge Analysis										------------------------------	-------------	------------------------	----------	-------------------	---------	--------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
-------|-------| | Exit | Short P | Percent Opposing | Critical | Follow-up Lane Ca | apacity | Deg. | Min. | Merge | | Lane | Lane O | png in Flow Rate | Gap | Headway Flow | | Satn [| Delay | Delay | | Number | Length | Lane | | Rate | | | | | | | ft | % veh/h pcu/h | sec | sec veh/h | veh/h | v/c | sec | sec | | There are no Exit Short Land | es for Merg | ge Analysis at this Si | te. | | | | | | | Variable Demai | nd Analysis | | | | |-------------------|-----------------------------|------------------------------|--|----------------------------| | | Initial
Queued
Demand | Residual
Queued
Demand | Time for
Residual
Demand
to Clear | Duration
of
Oversatn | | | veh | veh | sec | sec | | South: 6th Avenu | e NB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | East: Federal Str | eet. WB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | North: 6th Avenue | e SB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | West: Federal Str | eet EB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | FINAL - Single Lane (Site Folder: PM Peak - 2025)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200 Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout | Lane Use | and P | erfor | mance | | | | | | | | | | | | | |---------------------|---------------|-----------|------------------|-----------|-------|--------------|---------------|----------------|---------------------|-------|--------------|----------------|----------------|------------------|-------------------| | | Dem
Flo | NS | Arrival | | Сар. | Deg.
Satn | Lane
Util. | Aver.
Delay | Level of
Service | Que | | Lane
Config | Lane
Length | Cap. F
Adj. E | Prob.
Block. | | | [Total veh/h | HV]
% | [Total
veh/h | HV]
% | veh/h | v/c | % | sec | | [Veh | Dist]
ft | | ft | % | % | | South: 6th | Avenue | NB | | | | | | | | | | | | | | | Lane 1 ^d | 440 | 3.0 | 440 | 3.0 | 557 | 0.790 | 100 | 18.3 | LOS B | 2.7 | 68.0 | Full | 200 | 0.0 | 0.3 | | Approach | 440 | 3.0 | 440 | 3.0 | | 0.790 | | 18.3 | LOS B | 2.7 | 68.0 | | | | | | East: Fede | ral Stre | et. WE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 335 | 2.1 | 335 | 2.1 | 778 | 0.431 | 100 | 7.5 | LOSA | 0.9 | 23.9 | Full | 300 | 0.0 | 0.0 | | Approach | 335 | 2.1 | 335 | 2.1 | | 0.431 | | 7.5 | LOSA | 0.9 | 23.9 | | | | | | North: 6th | Avenue | SB | | | | | | | | | | | | | | | Lane 1 ^d | 751 | 1.9 | 751 | 1.9 | 850 | 0.883 | 100 | 17.1 | LOS B | 5.7 | 144.0 | Full | 300 | 0.0 | <mark>10.5</mark> | | Approach | 751 | 1.9 | 751 | 1.9 | | 0.883 | | 17.1 | LOS B | 5.7 | 144.0 | | | | | | West: Fed | eral Stre | et EE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 667 | 2.2 | 667 | 2.2 | 688 | 0.968 | 100 | 31.0 | LOS C | 7.3 | 185.2 | Full | 350 | 0.0 | <mark>13.8</mark> | | Approach | 667 | 2.2 | 667 | 2.2 | | 0.968 | | 31.0 | LOS C | 7.3 | 185.2 | | | | | | All
Vehicles | 2192 | 2.2 | 2192 | 2.2 | | 0.968 | | 20.1 | LOSC | 7.3 | 185.2 | | | | | Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included). Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap. Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Approach L | ane Flo | ows (v | eh/h) | | | | | | | | | |----------------------------|---------|---------|---------|---------|-------|-----|---------------|---------------------|-----------------------------------|------|--| | South: 6th Ave | enue N | В | | | | | | | | | | | Mov.
From S
To Exit: | U
S | L2
W | T1
N | R2
E | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | Lane Prob.
Util. SL Ov.
% % | Lane | | | Lane 1 | 1 | 111 | 242 | 86 | 440 | 3.0 | 557 | 0.790 | 100 NA | NA | | | Approach | 1 | 111 | 242 | 86 | 440 | 3.0 | | 0.790 | | | | | East: Federal | Street. | WB | | | | | | | | | | | Mov.
From E | U | L2 | T1 | R2 | Total | %HV | Сар. | Deg.
Satn | Lane Prob.
Util. SL Ov. | | | | To Exit: | Е | S | W | Ν | | | veh/h | v/c | % % | No. | | | Lane 1 | 1 | 63 | 225 | 46 | 335 | 2.1 | 778 | 0.431 | 100 | NA | NA | | |---------------|-----------|-------|---------|---------|-------|-----|---------------|-------------|---------|-------------|-------------|--| | Approach | 1 | 63 | 225 | 46 | 335 | 2.1 | | 0.431 | | | | | | North: 6th Av | enue S | В | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | | Prob. | Ov. | | | From N | | | | | | | Cap.
veh/h | Satn
v/c | Util. % | SL Ov.
% | Lane
No. | | | To Exit: | N | E | S | W | | | vei//ii | V/C | 70 | 70 | INU. | | | Lane 1 | 11 | 205 | 370 | 174 | 751 | 1.9 | 850 | 0.883 | 100 | NA | NA | | | Approach | 1 | 205 | 370 | 174 | 751 | 1.9 | | 0.883 | | | | | | West: Federa | al Street | EB | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | Lane | Prob. | Ov. | | | From W | | | | | | | Cap. | Satn | | SL Ov. | Lane | | | To Exit: | W | Ν | Е | S | | | veh/h | v/c | % | % | No. | | | Lane 1 | 34 | 126 | 452 | 55 | 667 | 2.2 | 688 | 0.968 | 100 | NA | NA | | | Approach | 34 | 126 | 452 | 55 | 667 | 2.2 | | 0.968 | | | | | | | Total | %HV [| eg.Satr | n (v/c) | | | | | | | | | | All Vehicles | 2192 | 2.2 | | 0.968 | | | | | | | | | Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Merge Analysis | | | | | | | | |-----------------------------|-----------|--------------------------|----------|---------------------|----------|--------|-------| | Exit | Short | Percent Opposing | Critical | Follow-up Lane Capa | city Deg | . Min. | Merge | | Lane | Lane | Opng in Flow Rate | Gap | Headway Flow | Satr | Delay | Delay | | Number | Length | Lane | | Rate | | | | | | ft | % veh/h pcu/h | sec | sec veh/h ve | eh/h v/d | sec | sec | | There are no Exit Short Lan | es for Me | erge Analysis at this Si | te. | | | | | | Variable Demand | Analysis | | | | |---|-----------------------------|------------------------------|--|----------------------------| | | Initial
Queued
Jemand | Residual
Queued
Demand | Time for
Residual
Demand
to Clear | Duration
of
Oversatn | | | veh | veh | sec | sec | | South: 6th Avenue N | 1B | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | East: Federal Street. | WB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | North: 6th Avenue S | В | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | West: Federal Street | EB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | North: 6th Avenue S Lane 1 West: Federal Street | 0.0
EB | 0.0 | 0.0 | 0.0 | ▼ Site: 101 [Federal Street/6th Avenue PM Peak - NBL-SBL - FINAL - Single Lane (Site Folder: PM Peak - 2045)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200 Federal Street/River Street ETC+20 2045 PM Peak Site Category: (None) Roundabout | Lane Use | and P | erfor | mance | | | | | | | | | | | | | |---------------------|---------------|----------|------------------|----------|-------|--------------|---------------|----------------|---------------------|-------|---------------|----------------|----------------|------------------|--------------------| | | Dem
Flo | | Arrival | | Сар. | Deg.
Satn | Lane
Util. | Aver.
Delay | Level of
Service | | ack Of
eue | Lane
Config | Lane
Length | Cap. F
Adj. E | Prob.
Block. | | | [Total veh/h | HV]
% | [Total
veh/h | HV]
% | veh/h | v/c | % | sec | | [Veh | Dist]
ft | | ft | % | % | | South: 6th | Avenue | NB | | | | | | | | | | | | | | | Lane 1 ^d | 496 | 3.0 | 496 | 3.0 | 558 | 0.889 | 100 | 24.7 | LOS C | 4.0 | 101.9 | Full | 200 | 0.0 | <mark>12.5</mark> | | Approach | 496 | 3.0 | 496 | 3.0 | | 0.889 | | 24.7 | LOS C | 4.0 | 101.9 | | | | | | East: Fede | ral Stre | et. WE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 377 | 2.1 | 377 | 2.1 | 744 | 0.507 | 100 | 8.6 | LOSA | 1.2 | 31.4 | Full | 300 | 0.0 | 0.0 | | Approach | 377 | 2.1 | 377 | 2.1 | | 0.507 | | 8.6 | LOSA | 1.2 | 31.4 | | | | | | North: 6th | Avenue | SB | | | | | | | | | | | | | | | Lane 1 ^d | 846 | 1.9 | 846 | 1.9 | 806 | 1.050 | 100 | 48.6 | LOS F | 13.6 | 344.2 | Full | 300 | 0.0 | <mark>78.9</mark> | | Approach | 846 | 1.9 | 846 | 1.9 | | 1.050 | | 48.6 | LOS D | 13.6 | 344.2 | | | | | | West: Fed | eral Stre | et EE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 751 | 2.2 | 751 | 2.2 | 654 | 1.148 | 100 | 87.9 | LOS F | 17.3 | 440.1 | Full | 350 | 0.0 | <mark>100.0</mark> | | Approach | 751 | 2.2 | 751 | 2.2 | | 1.148 | | 87.9 | LOS F | 17.3 | 440.1 | | | | | | All
Vehicles | 2470 | 2.2 | 2470 | 2.2 | | 1.148 | | 49.6 | LOS D | 17.3 | 440.1 | | | | | Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on
average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included). Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap. Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Approach L | | <u> </u> | | | | | | | | | | |----------------------------|---------|----------|---------|---------|-------|-----|---------------|---------------------|--------------------------|-----|--------------------| | South: 6th Ave | enue N | IB . | | | | | | | | | | | Mov.
From S
To Exit: | U
S | L2
W | T1
N | R2
E | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | Lane Pi
Util. SL
% | | Ov.
Lane
No. | | Lane 1 | 1 | 125 | 273 | 97 | 496 | 3.0 | 558 | 0.889 | 100 | NA | NA | | Approach | 1 | 125 | 273 | 97 | 496 | 3.0 | | 0.889 | | | | | East: Federal | Street. | WB | | | | | | | | | | | Mov.
From E | U | L2 | T1 | R2 | Total | %HV | Cap. | Deg.
Satn | Lane Pi
Util. SL | Ov. | Ov.
Lane | | To Exit: | Е | S | W | Ν | | | veh/h | v/c | % | % | No. | | Lane 1 | 1 | 71 | 254 | 52 | 377 | 2.1 | 744 | 0.507 | 100 | NA | NA | | |----------------|----------|-------|---------|---------|-------|-----|-------|--------------|-------|-----------------|-------------|--| | Approach | 1 | 71 | 254 | 52 | 377 | 2.1 | | 0.507 | | | | | | North: 6th Av | enue S | В | | | | | | | | | | | | Mov.
From N | U | L2 | T1 | R2 | Total | %HV | Cap. | Deg.
Satn | | Prob.
SL Ov. | Ov.
Lane | | | To Exit: | N | Е | S | W | | | veh/h | v/c | % | % | No. | | | Lane 1 | 1 | 231 | 417 | 197 | 846 | 1.9 | 806 | 1.050 | 100 | NA | NA | | | Approach | 1 | 231 | 417 | 197 | 846 | 1.9 | | 1.050 | | | | | | West: Federa | l Street | EB | | | | | | | | | | | | Mov.
From W | U | L2 | T1 | R2 | Total | %HV | Cap. | Deg.
Satn | Util. | Prob.
SL Ov. | Ov.
Lane | | | To Exit: | W | N | Е | S | | | veh/h | v/c | % | % | No. | | | Lane 1 | 39 | 142 | 509 | 61 | 751 | 2.2 | 654 | 1.148 | 100 | NA | NA | | | Approach | 39 | 142 | 509 | 61 | 751 | 2.2 | | 1.148 | | | | | | | Total | %HV [| Deg.Sat | n (v/c) | | | | | | | | | | All Vehicles | 2470 | 2.2 | | 1.148 | | | | | | | | | Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Merge Analysis | | | | | | | | |-----------------------------|-----------|--------------------------|----------|---------------------|----------|--------|-------| | Exit | Short | Percent Opposing | Critical | Follow-up Lane Capa | city Deg | . Min. | Merge | | Lane | Lane | Opng in Flow Rate | Gap | Headway Flow | Satr | Delay | Delay | | Number | Length | Lane | | Rate | | | | | | ft | % veh/h pcu/h | sec | sec veh/h ve | eh/h v/d | sec | sec | | There are no Exit Short Lan | es for Me | erge Analysis at this Si | te. | | | | | | Variable Deman | d Analysis | | | | |--------------------|-----------------------------|------------------------------|--|----------------------------| | | Initial
Queued
Demand | Residual
Queued
Demand | Time for
Residual
Demand
to Clear | Duration
of
Oversatn | | | veh | veh | sec | sec | | South: 6th Avenue | NB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | East: Federal Stre | et. WB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | North: 6th Avenue | SB | | | | | Lane 1 | 0.0 | 10.1 | 45.1 | NA | | West: Federal Stre | eet EB | | | | | Lane 1 | 0.0 | 24.2 | 133.3 | NA | ▼ Site: 101 [Federal Street/6th Avenue Noon Peak - NBL-SBL - FINAL - Single Lane (Site Folder: Noon Peak - 2045)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200 Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout | Lane Use | and F | erfor | mance | | | | | | | | | | | | | |---------------------|---------------|--------|------------------|-------|-------|--------------|---------------|----------------|---------------------|---------------|--------------|----------------|----------------|------------------|-----| | | Dem
Flo | | Arrival | Flows | Сар. | Deg.
Satn | Lane
Util. | Aver.
Delay | Level of
Service | 50% Ba
Que | | Lane
Config | Lane
Length | Cap. F
Adj. B | | | | [Total veh/h | HV] | [Total
veh/h | HV] | veh/h | v/c | % | sec | | [Veh | Dist]
ft | | ft | % | % | | South: 6th | Avenue | NB | | | | | | | | | | | | | | | Lane 1 ^d | 342 | 2.5 | 342 | 2.5 | 797 | 0.429 | 100 | 7.3 | LOSA | 0.9 | 23.9 | Full | 200 | 0.0 | 0.0 | | Approach | 342 | 2.5 | 342 | 2.5 | | 0.429 | | 7.3 | LOSA | 0.9 | 23.9 | | | | | | East: Fede | eral Stre | et. WE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 290 | 4.5 | 290 | 4.5 | 859 | 0.337 | 100 | 6.4 | LOSA | 0.6 | 16.8 | Full | 300 | 0.0 | 0.0 | | Approach | 290 | 4.5 | 290 | 4.5 | | 0.337 | | 6.4 | LOSA | 0.6 | 16.8 | | | | | | North: 6th | Avenue | SB | | | | | | | | | | | | | | | Lane 1 ^d | 604 | 2.8 | 604 | 2.8 | 878 | 0.688 | 100 | 9.1 | LOSA | 2.6 | 66.1 | Full | 300 | 0.0 | 0.0 | | Approach | 604 | 2.8 | 604 | 2.8 | | 0.688 | | 9.1 | LOSA | 2.6 | 66.1 | | | | | | West: Fed | eral Str | eet EE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 458 | 3.4 | 458 | 3.4 | 792 | 0.578 | 100 | 9.4 | LOSA | 1.6 | 41.7 | Full | 350 | 0.0 | 0.0 | | Approach | 458 | 3.4 | 458 | 3.4 | | 0.578 | | 9.4 | LOS A | 1.6 | 41.7 | | | | | | All
Vehicles | 1694 | 3.2 | 1694 | 3.2 | | 0.688 | | 8.3 | LOSA | 2.6 | 66.1 | | | | | Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included). Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap. Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Approach L | | · · | 011111) | | | | | | | | |----------------------------|---------|---------|---------|---------|-------|-----|---------------|---------------------|---------------------------------|--------| | South: 6th Ave | enue N | В | | | | | | | | | | Mov.
From S
To Exit: | U
S | L2
W | T1
N | R2
E | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | Lane Prob
Util. SL Ov
% % | . Lane | | Lane 1 | 1 | 76 | 186 | 79 | 342 | 2.5 | 797 | 0.429 | 100 NA | NA NA | | Approach | 1 | 76 | 186 | 79 | 342 | 2.5 | | 0.429 | | | | East: Federal | Street. | WB | | | | | | | | | | Mov.
From E | U | L2 | T1 | R2 | Total | %HV | Cap. | Deg.
Satn | Lane Prob
Util. SL Ov | . Lane | | To Exit: | Е | S | W | Ν | | | veh/h | v/c | % % | No. | | Lane 1 | 1 | 82 | 185 | 22 | 290 | 4.5 | 859 | 0.337 | 100 | NA | NA | | |---------------|-----------|-------|---------|---------|-------|-----|---------------|-------------|---------|-------------|-------------|--| | Approach | 1 | 82 | 185 | 22 | 290 | 4.5 | | 0.337 | | | | | | North: 6th Av | enue S | В | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | | Prob. | Ov. | | | From N | N | Е | S | W | | | Cap.
veh/h | Satn
v/c | Util. % | SL Ov.
% | Lane
No. | | | To Exit: | IN | | | | | | | | | | | | | Lane 1 | 1 | 74 | 324 | 205 | 604 | 2.8 | 878 | 0.688 | 100 | NA | NA | | | Approach | 1 | 74 | 324 | 205 | 604 | 2.8 | | 0.688 | | | | | | West: Federa | al Street | EB | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | Lane | Prob. | Ov. | | | From W | | | | | | | Сар. | Satn | | SL Ov. | Lane | | | To Exit: | W | Ν | Ε | S | | | veh/h | v/c | % | % | No. | | | Lane 1 | 48 | 84 | 274 | 52 | 458 | 3.4 | 792 | 0.578 | 100 | NA | NA | | | Approach | 48 | 84 | 274 | 52 | 458 | 3.4 | | 0.578 | | | | | | | Total | %HV E | eg.Satı | n (v/c) | | | | | | | | | | All Vehicles | 1694 | 3.2 | | 0.688 | | | | | | | | | Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Merge Analysis | | | | | | | | | |------------------------------|-------------|------------------------|----------|-------------------|---------|--------|-------|-------| | Exit | Short P | Percent Opposing | Critical | Follow-up Lane Ca | apacity | Deg. | Min. | Merge | | Lane | Lane O | png in Flow Rate | Gap | Headway Flow | | Satn [| Delay | Delay | | Number | Length | Lane | | Rate | | | | | | | ft | % veh/h pcu/h | sec | sec veh/h | veh/h | v/c | sec | sec | | There are no Exit Short Land | es for Merg | ge Analysis at this Si | te. | | | | | | | | Time a fam | | |--|--|----------------------------| | Initial Residual
Queued Queued
Demand Demand | Time for
Residual
Demand
to Clear | Duration
of
Oversatn | | veh veh | sec | sec | | South: 6th Avenue NB | | | | Lane 1 0.0 0.0 | 0.0 | 0.0 | | East: Federal Street. WB | | | | Lane 1 0.0 0.0 | 0.0 | 0.0 | | North: 6th Avenue SB | | | | Lane 1 0.0 0.0 |
0.0 | 0.0 | | West: Federal Street EB | | | | Lane 1 0.0 0.0 | 0.0 | 0.0 | ♥ Site: 101 [Federal Street/6th Avenue PM Peak - NBL-SBL - FINAL (Site Folder: PM Peak - 2045)] Federal Street/River Street ETC+20 2045 PM Peak Site Category: (None) Roundabout | Lane Use and Performance | | | | | | | | | | | | | | |-------------------------------------|---------------------------------|-------------------|------------|-------------------------|--------------------|-----------------------|-------------------------|------------------------|---------------------|----------------|----------------------|-------------------|-------------------| | | DEM.
FLO
[Total
veh/h | | Cap. | Deg.
Satn
v/c | Lane
Util.
% | Aver.
Delay
sec | Level of
Service | 50% BA
QUE
[Veh | | Lane
Config | Lane
Length
ft | Cap.
Adj.
% | Prob.
Block. | | South: 6th A | | | ven/m | V/C | 70 | Sec | | | IL | | IL | 70 | 70 | | Lane 1 Lane 2 ^d Approach | 126
370
496 | 5.0
2.3
3.0 | 543
625 | 0.232
0.592
0.592 | 100
100 | 11.8
9.9
10.4 | LOS B
LOS A
LOS B | 0.3
1.3
1.3 | 8.5
33.1
33.1 | Short
Full | 100
200 | 0.0 | NA
0.0 | | East: Federa | al Street. | WB | | | | | | | | | | | | | Lane 1 ^d | 377 | 2.1 | 836 | 0.452 | 100 | 6.9 | LOS A | 0.9 | 23.2 | Full | 300 | 0.0 | 0.0 | | Approach | 377 | 2.1 | | 0.452 | | 6.9 | LOS A | 0.9 | 23.2 | | | | | | North: 6th Av | venue Sl | В | | | | | | | | | | | | | Lane 1
Lane 2 ^d | 232
614 | 1.0
2.2 | 838
902 | 0.277
0.681 | 100
100 | 9.5
7.7 | LOS A
LOS A | 0.5
2.2 | 11.8
54.8 | Short
Full | 100
300 | 0.0 | NA
0.0 | | Approach | 846 | 1.9 | - 002 | 0.681 | 100 | 8.2 | LOSA | 2.2 | 54.8 | T dii | | 0.0 | 0.0 | | West: Feder | al Street | EB | | | | | | | | | | | | | Lane 1 ^d | 751 | 2.2 | 748 | 1.003 | 100 | 34.8 | LOS F | 8.8 | 223.4 | Full | 350 | 0.0 | <mark>20.9</mark> | | Approach | 751 | 2.2 | | 1.003 | | 34.8 | LOS C | 8.8 | 223.4 | | | | | | Intersection | 2470 | 2.2 | | 1.003 | | 16.5 | LOS B | 8.8 | 223.4 | | | | | Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Geometric Delay is included). Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. | Approach La | ane Flo | ws (ve | h/h) | | | | | | | | | |----------------------------|-----------|----------|----------|---------|------------|------------|---------------|---------------------|------------|----------------------|--------------------| | South: 6th Ave | nue NE | 3 | | | | | | | | | | | Mov.
From S
To Exit: | U
S | L2
W | T1
N | R2
E | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | | Prob.
SL Ov.
% | Ov.
Lane
No. | | Lane 1
Lane 2 | 1 - | 125
- | -
273 | -
97 | 126
370 | 5.0
2.3 | | 0.232
0.592 | 100
100 | 0.0
NA | 2
NA | | Approach | 1 | 125 | 273 | 97 | 496 | 3.0 | | 0.592 | | | | | East: Federal S | Street. V | VB | | | | | | | | | | | Mov.
From E | U | L2 | T1 | R2 | Total | %HV | Cap. | Deg.
Satn | Lane
Util | Prob.
SL Ov. | Ov.
Lane | | |----------------|----------|-------|----------|---------|-------|-----|---------------|--------------|--------------|-----------------|-------------|--| | To Exit: | Е | S | W | Ν | | | veh/h | v/c | % | % | No. | | | Lane 1 | 1 | 71 | 254 | 52 | 377 | 2.1 | 836 | 0.452 | 100 | NA | NA | | | Approach | 1 | 71 | 254 | 52 | 377 | 2.1 | | 0.452 | | | | | | North: 6th Ave | enue SE | 3 | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | 0-11 | Deg. | Lane | Prob. | Ov. | | | From N | | | | | | | Cap.
veh/h | Satn
v/c | Util.
% | SL Ov. | Lane
No. | | | To Exit: | N | Е | S | W | | | VC11/11 | V/C | /0 | 70 | | | | Lane 1 | 1 | 231 | - | - | 232 | 1.0 | 838 | 0.277 | 100 | 0.0 | 2 | | | Lane 2 | - | - | 417 | 197 | 614 | 2.2 | 902 | 0.681 | 100 | NA | NA | | | Approach | 1 | 231 | 417 | 197 | 846 | 1.9 | | 0.681 | | | | | | West: Federa | l Street | EB | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | Lane | Prob. | Ov. | | | From W | | | | | | | Cap. | Satn | | SL Ov. | Lane | | | To Exit: | W | N | Е | S | | | veh/h | v/c | % | % | No. | | | Lane 1 | 39 | 142 | 509 | 61 | 751 | 2.2 | 748 | 1.003 | 100 | NA | NA | | | Approach | 39 | 142 | 509 | 61 | 751 | 2.2 | | 1.003 | | | | | | | Total | %HV I | Deg.Sati | n (v/c) | | | | | | | | | | Intersection | 2470 | 2.2 | | 1.003 | | | | | | | | | | Merge Analysis | | | | |--|---|-------------------------|-----------------------| | Exit
Lane
Number | Short Percent Opposing Critical Follow-up Lane Capacity Lane Opng in Flow Rate Gap Headway Flow Length Lane Rate ft % veh/h pcu/h sec sec veh/h veh/h | Deg. Min.
Satn Delay | Merge
Delay
sec | | South Exit: 6th Avenue NB
Merge Type: Not Applied | | | | | Full Length Lane 1 | Merge Analysis not applied. | | | | East Exit: Federal Street. Will Merge Type: Not Applied | | | | | Full Length Lane 1 | Merge Analysis not applied. | | | | North Exit: 6th Avenue SB
Merge Type: Not Applied | | | | | Full Length Lane 1 | Merge Analysis not applied. | | | | West Exit: Federal Street El
Merge Type: Not Applied | | | | | Full Length Lane 1 | Merge Analysis not applied. | | | SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Licence: PLUS / 1PC | Processed: Tuesday, August 30, 2022 8:51:00 AM Project: N:\Projects\2021\121-357 CDTC - Troy Federal St Linkage\Working\Traffic\Analysis\SIDRA\20220406_Federal-6th_121357.sip9 ♥ Site: 101 [Federal Street/6th Avenue Noon Peak - NBL-SBL - FINAL (Site Folder: Noon Peak - 2025)] Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout | Lane Use a | and Per | forman | се | | | | | | | | | | | |-------------------------------------|--------------------------------|-------------------|------------|---|--------------------|-----------------------|---------------------|-------------------------|---------------------|----------------|----------------------|-------------------|-----------------| | | DEM
FLO
[Total
veh/h | | Cap. | Deg.
Satn
v/c | Lane
Util.
% | Aver.
Delay
sec | Level of
Service | 50% BA0
QUE
[Veh | | Lane
Config | Lane
Length
ft | Cap.
Adj.
% | Prob.
Block. | | South: 6th A | | | 7011/11 | • | ,, | | | | | | | 70 | 70 | | Lane 1 Lane 2 ^d Approach | 69
235
304 | 0.0
3.2
2.5 | 892
939 | 0.077
0.250
0.250 | 100
100 | 8.7
4.4
5.3 | LOS A
LOS A | 0.1
0.4
0.4 | 2.9
10.4
10.4 | Short
Full | 100
200 | 0.0 | NA
0.0 | | East: Federa | al Street. | WB | | | | | | | | | | | | | Lane 1 ^d | 258 | 4.5 | 998 | 0.258 | 100 | 5.3 | LOS A | 0.4 | 11.0 | Full | 300 | 0.0 | 0.0 | | Approach | 258 | 4.5 | | 0.258 | | 5.3 | LOS A | 0.4 | 11.0 | | | | | | North: 6th Av | venue S | В | | | | | | | | | | | | | Lane 1 | 67 | 5.9 | 912 | 0.074 | 100 | 8.5 | LOSA | 0.1 | 2.7 | Short | 100 | 0.0 | NA | | Lane 2 ^d Approach | 470
537 | 2.4 | 1017 | 0.462 | 100 | 4.6
5.1 | LOS A | 1.0 | 24.7
24.7 | Full | 300 | 0.0 | 0.0 | | West: Feder | al Street | EB | | | | | | | | | | | | | Lane 1 ^d | 406 | 3.4 | 943 | 0.431 | 100 | 6.3 | LOS A | 0.8 | 21.7 | Full | 350 | 0.0 | 0.0 | | Approach | 406 | 3.4 | | 0.431 | | 6.3 | LOSA | 0.8 | 21.7 | | | | | | Intersection | 1505 | 3.2 | | 0.462 | | 5.5 | LOSA | 1.0 | 24.7 | | | | | Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Geometric Delay is included). Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. | Approach Lane Flows (veh/h) | | | eh/h) | ws (ve | ne Flo | Approach La | |---|-------------------------|--|-------|--------|--------|----------------| | South: 6th Avenue NB | | | | 3 | ue NE | South: 6th Ave | | Mov. U L2 T1 R2 Total %HV Deg. Lane Prob. From S To Exit: S W N E veh/h v/c % % | Cap. Satn Util SL Ov. I | | | | | rom S | | Lane 1 1 68 69 0.0 892 0.077 100 0.0 | | | | | 1 | | | Lane 2 - - 165 70 235 3.2 939 0.250 100 NA N Approach 1 68 165 70 304 2.5 0.250 | | | | | 1 | | | Mov. | U | L2 | T1 | R2 | Total | %HV | Cap. | Deg.
Satn |
Lane
Util | Prob.
SL Ov. | Ov.
Lane | | |--------------------|----------|-------|----------|---------|-------|-----|---------------|--------------|--------------|-----------------|-------------|--| | From E
To Exit: | Е | S | W | N | | | veh/h | v/c | % | % | No. | | | Lane 1 | 1 | 73 | 164 | 20 | 258 | 4.5 | 998 | 0.258 | 100 | NA | NA | | | Approach | 1 | 73 | 164 | 20 | 258 | 4.5 | | 0.258 | | | | | | North: 6th Ave | enue SE | 3 | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | Lane | Prob. | Ov. | | | From N | | | | | | | Cap.
veh/h | Satn
v/c | Util.
% | SL Ov. | Lane
No. | | | To Exit: | N | Е | S | W | | | | V/C | /0 | | | | | Lane 1 | 1 | 66 | - | - | 67 | 5.9 | 912 | 0.074 | 100 | 0.0 | 2 | | | Lane 2 | - | - | 288 | 182 | 470 | 2.4 | 1017 | 0.462 | 100 | NA | NA | | | Approach | 1 | 66 | 288 | 182 | 537 | 2.8 | | 0.462 | | | | | | West: Federa | l Street | EB | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | Lane | Prob. | Ov. | | | From W | | | | | | | Cap. | Satn | | SL Ov. | Lane | | | To Exit: | W | N | E | S | | | veh/h | v/c | % | % | No. | | | Lane 1 | 43 | 74 | 243 | 45 | 406 | 3.4 | 943 | 0.431 | 100 | NA | NA | | | Approach | 43 | 74 | 243 | 45 | 406 | 3.4 | | 0.431 | | | | | | | Total | %HV I | Deg.Sati | n (v/c) | | | | | | | | | | Intersection | 1505 | 3.2 | | 0.462 | | | | | | | | | | Merge Analysis | | | | | | | | | | |--|----|-------------------------------|-----------------|--------------------------------------|------------------------|-----------------------------|-------------------|---------------------|-----------------------| | Ex
Lan
Numbe | е | Short
Lane
Length
ft | Opng in
Lane | Opposing
Flow Rate
veh/h pcu/h | Critical
Gap
sec | Follow-up
Headway
sec | Capacity
veh/h | Deg.
Satn
v/c | Merge
Delay
sec | | South Exit: 6th Avenue NE Merge Type: Not Applied | 3 | | | | | | | | | | Full Length Lane | 1 | Merge A | Analysis r | not applied. | | | | | | | East Exit: Federal Street. V
Merge Type: Not Applied | VB | | | | | | | | | | Full Length Lane | 1 | Merge A | Analysis r | not applied. | | | | | | | North Exit: 6th Avenue SB
Merge Type: Not Applied | | | | | | | | | | | Full Length Lane | 1 | Merge A | Analysis r | not applied. | | | | | | | West Exit: Federal Street I
Merge Type: Not Applied | EB | | | | | | | | | | Full Length Lane | 1 | Merge A | Analysis r | not applied. | | | | | | SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Licence: PLUS / 1PC | Processed: Tuesday, August 30, 2022 8:43:59 AM Project: N:\Projects\2021\121-357 CDTC - Troy Federal St Linkage\Working\Traffic\Analysis\SIDRA\20220406_Federal-6th_121357.sip9 ♥ Site: 101 [Federal Street/6th Avenue PM Peak - NBL-SBL - FINAL (Site Folder: PM Peak - 2025)] Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout | Lane Use a | and Perf | forman | се | | | | | | | | | | | |-------------------------------------|---------------------------------|-------------------|------------|-------------------------|--------------------|-----------------------|-------------------------|------------------------|---------------------|----------------|----------------------|-------------------|-----------------| | | DEM/
FLO
[Total
veh/h | | Cap. | Deg.
Satn
v/c | Lane
Util.
% | Aver.
Delay
sec | Level of
Service | 50% BA
QUE
[Veh | | Lane
Config | Lane
Length
ft | Cap.
Adj.
% | Prob.
Block. | | South: 6th A | | | | .,, | - / - | | | | | | | 70 | | | Lane 1 Lane 2 ^d Approach | 112
328
440 | 5.0
2.3
3.0 | 597
683 | 0.187
0.480
0.480 | 100
100 | 11.1
7.8
8.6 | LOS B
LOS A
LOS A | 0.3
0.9
0.9 | 6.9
24.1
24.1 | Short
Full | 100
200 | 0.0 | NA
0.0 | | East: Federa | al Street. | WB | | | | | | | | | | | | | Lane 1 ^d Approach | 335
335 | 2.1 | 885 | 0.379 | 100 | 6.0 | LOS A | 0.7 | 17.4
17.4 | Full | 300 | 0.0 | 0.0 | | North: 6th Av | venue SI | В | | | | | | | | | | | | | Lane 1 Lane 2 ^d Approach | 206
544
751 | 1.0
2.2
1.9 | 883
946 | 0.234
0.575
0.575 | 100
100 | 9.1
6.1
6.9 | LOS A
LOS A | 0.4
1.5
1.5 | 9.8
38.3
38.3 | Short
Full | 100
300 | 0.0 | NA
0.0 | | West: Feder | al Street | EB | | | | | | | | | | | | | Lane 1 ^d Approach | 667
667 | 2.2 | 802 | 0.831
0.831 | 100 | 13.7
13.7 | LOS B | 3.5
3.5 | 89.4
89.4 | Full | 350 | 0.0 | 0.0 | | Intersection | 2192 | 2.2 | | 0.831 | | 9.2 | LOSA | 3.5 | 89.4 | | | | | Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Geometric Delay is included). Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. | Approach La | ane Flo | ws (ve | h/h) | | | | | | | | | |----------------------------|-----------|----------|----------|---------|------------|------------|---------------|---------------------|------------|----------------------|--------------------| | South: 6th Ave | nue NE | 3 | | | | | | | | | | | Mov.
From S
To Exit: | U
S | L2
W | T1
N | R2
E | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | | Prob.
SL Ov.
% | Ov.
Lane
No. | | Lane 1
Lane 2 | 1 - | 111
- | -
242 | -
86 | 112
328 | 5.0
2.3 | 597
683 | 0.187
0.480 | 100
100 | 0.0
NA | 2
NA | | Approach | 1 | 111 | 242 | 86 | 440 | 3.0 | | 0.480 | | | | | East: Federal | Street. V | VB | | | | | | | | | | | Mov.
From E | U | L2 | T1 | R2 | Total | %HV | Cap. | Deg.
Satn | Lane
Util. | Prob.
SL Ov. | Ov.
Lane | | |--------------------|----------|-------|----------|---------|-------|-----|---------------|--------------|---------------|-----------------|-------------|--| | To Exit: | Е | S | W | N | | | veh/h | v/c | % | % | No. | | | Lane 1 | 1 | 63 | 225 | 46 | 335 | 2.1 | 885 | 0.379 | 100 | NA | NA | | | Approach | 1 | 63 | 225 | 46 | 335 | 2.1 | | 0.379 | | | | | | North: 6th Ave | enue SE | 3 | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | Cap. | Deg.
Satn | Lane
Util | Prob.
SL Ov. | Ov.
Lane | | | From N
To Exit: | N | Е | S | W | | | veh/h | v/c | % | % | No. | | | Lane 1 | 1 | 205 | - | - | 206 | 1.0 | 883 | 0.234 | 100 | 0.0 | 2 | | | Lane 2 | - | - | 370 | 174 | 544 | 2.2 | 946 | 0.575 | 100 | NA | NA | | | Approach | 1 | 205 | 370 | 174 | 751 | 1.9 | | 0.575 | | | | | | West: Federa | l Street | EB | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | Lane | Prob. | Ov. | | | From W
To Exit: | W | N | Е | S | | | Cap.
veh/h | Satn
v/c | Util.
% | SL Ov.
% | Lane
No. | | | Lane 1 | 34 | 126 | 452 | 55 | 667 | 2.2 | 802 | 0.831 | 100 | NA | NA | | | Approach | 34 | 126 | 452 | 55 | 667 | 2.2 | | 0.831 | | | | | | | Total | %HV I | Deg.Sati | n (v/c) | | | | | | | | | | Intersection | 2192 | 2.2 | | 0.831 | | | | | | | | | | Merge Analysis | | | | |--|---|-------------------------|-----------------------| | Exit
Lane
Number | Short Percent Opposing Critical Follow-up Lane Capacity Lane Opng in Flow Rate Gap Headway Flow Length Lane Rate ft % veh/h pcu/h sec sec veh/h veh/h | Deg. Min.
Satn Delay | Merge
Delay
sec | | South Exit: 6th Avenue NB
Merge Type: Not Applied | | | | | Full Length Lane 1 | Merge Analysis not applied. | | | | East Exit: Federal Street. Will Merge Type: Not Applied | | | | | Full Length Lane 1 | Merge Analysis not applied. | | | | North Exit: 6th Avenue SB
Merge Type: Not Applied | | | | | Full Length Lane 1 | Merge Analysis not applied. | | | | West Exit: Federal Street El
Merge Type: Not Applied | | | | | Full Length Lane 1 | Merge Analysis not applied. | | | SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Licence: PLUS / 1PC | Processed: Tuesday, August 30, 2022 8:46:25 AM Project: N:\Projects\2021\121-357 CDTC - Troy Federal St Linkage\Working\Traffic\Analysis\SIDRA\20220406_Federal-6th_121357.sip9 ♥ Site: 101 [Federal Street/6th Avenue Noon Peak - NBL-SBL - FINAL (Site Folder: Noon Peak - 2045)] Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout | Lane Use a | and Perf | forman | се | | | | | | | | | | | |-------------------------------------|---------------------------------|-------------------|------------|-------------------------|--------------------|-----------------------|---------------------|------------------------|---------------------|----------------|----------------------|-------------------|----------------------| | | DEM/
FLO
[Total
veh/h | | Cap. | Deg.
Satn
v/c | Lane
Util.
% | Aver.
Delay
sec | Level of
Service | 50% BA
QUE
[Veh | | Lane
Config | Lane
Length
ft | Cap.
Adj.
% | Prob.
Block.
% | | South: 6th A | | В | | | | | | | | | | | | | Lane 1 Lane 2 ^d
Approach | 77
265
342 | 0.0
3.2
2.5 | 896
869 | 0.086
0.305
0.305 | 100
100 | 8.9
5.0
5.9 | LOS A
LOS A | 0.1
0.5
0.5 | 3.3
13.6
13.6 | Short
Full | 100
200 | 0.0 | NA
0.0 | | East: Federa | al Street. | WB | | | | | | | | | | | | | Lane 1 ^d | 290 | 4.5 | 961 | 0.301 | 100 | 5.6 | LOS A | 0.5 | 13.1 | Full | 300 | 0.0 | 0.0 | | Approach | 290 | 4.5 | | 0.301 | | 5.6 | LOS A | 0.5 | 13.1 | | | | | | North: 6th Av | venue SI | В | | | | | | | | | | | | | Lane 1
Lane 2 ^d | 75
529 | 5.9
2.4 | 924
956 | 0.081
0.553 | 100
100 | 8.6
5.9 | LOS A
LOS A | 0.1
1.5 | 3.1
37.4 | Short
Full | 100
300 | 0.0 | NA
0.0 | | Approach | 604 | 2.8 | | 0.553 | | 6.2 | LOSA | 1.5 | 37.4 | | | | | | West: Feder | al Street | EB | | | | | | | | | | | | | Lane 1 ^d | 458 | 3.4 | 900 | 0.509 | 100 | 7.2 | LOSA | 1.1 | 29.3 | Full | 350 | 0.0 | 0.0 | | Approach | 458 | 3.4 | | 0.509 | | 7.2 | LOSA | 1.1 | 29.3 | | | | | | Intersection | 1694 | 3.2 | | 0.553 | | 6.3 | LOSA | 1.5 | 37.4 | | | | | Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Geometric Delay is included). Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. | | nue NB | ; | | | | | | | | | | |----------------------------|--------|---------|----------|---------|-----------|------------|---------------|---------------------|------------|----------------------|--------------------| | Mov.
From S
To Exit: | U
S | L2
W | T1
N | R2
E | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | | Prob.
SL Ov.
% | Ov.
Lane
No. | | Lane 1
Lane 2 | 1 - | 76
- | -
186 | -
79 | 77
265 | 0.0
3.2 | 896
869 | 0.086
0.305 | 100
100 | 0.0
NA | 2
NA | | Approach | 1 | 76 | 186 | 79 | 342 | 2.5 | | 0.305 | | | | | Mov.
From E | U | L2 | T1 | R2 | Total | %HV | Сар. | Deg.
Satn | Lane
Util. | Prob.
SL Ov. | Ov.
Lane | | |----------------|----------|-----|---------|---------|-------|-----|---------------|--------------|---------------|-----------------|-------------|--| | To Exit: | Ε | S | W | Ν | | | veh/h | v/c | % | % | No. | | | Lane 1 | 1 | 82 | 185 | 22 | 290 | 4.5 | 961 | 0.301 | 100 | NA | NA | | | Approach | 1 | 82 | 185 | 22 | 290 | 4.5 | | 0.301 | | | | | | North: 6th Ave | enue SE | } | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | 0 | Deg. | Lane | Prob. | Ov. | | | From N | | | | | | | Cap.
veh/h | Satn
v/c | Util.
% | SL Ov. | Lane
No. | | | To Exit: | N | Е | S | W | | | Ven/m | V/C | 70 | 70 | INU. | | | Lane 1 | 1 | 74 | - | - | 75 | 5.9 | 924 | 0.081 | 100 | 0.0 | 2 | | | Lane 2 | - | - | 324 | 205 | 529 | 2.4 | 956 | 0.553 | 100 | NA | NA | | | Approach | 1 | 74 | 324 | 205 | 604 | 2.8 | | 0.553 | | | | | | West: Federal | l Street | EB | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | Lane | Prob. | Ov. | | | From W | | | | | | | Cap. | Satn | | SL Ov. | Lane | | | To Exit: | W | N | Е | S | | | veh/h | v/c | % | % | No. | | | Lane 1 | 48 | 84 | 274 | 52 | 458 | 3.4 | 900 | 0.509 | 100 | NA | NA | | | Approach | 48 | 84 | 274 | 52 | 458 | 3.4 | | 0.509 | | | | | | | Total | %HV | Deg.Sat | n (v/c) | | | | | | | | | | Intersection | 1694 | 3.2 | | 0.553 | | | | | | | | | | Merge Analysis | | | | | | | | | | |--|----|---------|-----------------|--------------------------------------|------------------------|-----------------------------|-------------------|----------------------|-----------------------| | Ex
Lan
Numbe | е | | Opng in
Lane | Opposing
Flow Rate
veh/h pcu/h | Critical
Gap
sec | Follow-up
Headway
sec | Capacity
veh/h | Min.
Delay
sec | Merge
Delay
sec | | South Exit: 6th Avenue NE
Merge Type: Not Applied | 3 | | | | | | | | | | Full Length Lane | 1 | Merge / | Analysis r | not applied. | | | | | | | East Exit: Federal Street. V
Merge Type: Not Applied | VΒ | | | | | | | | | | Full Length Lane | 1 | Merge / | Analysis r | not applied. | | | | | | | North Exit: 6th Avenue SB
Merge Type: Not Applied | 1 | | | | | | | | | | Full Length Lane | 1 | Merge / | Analysis r | not applied. | | | | | | | West Exit: Federal Street
Merge Type: Not Applied | EB | | | | | | | | | | Full Length Lane | 1 | Merge / | Analysis r | not applied. | | | | | | SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Licence: PLUS / 1PC | Processed: Tuesday, August 30, 2022 8:48:50 AM Project: N:\Projects\2021\121-357 CDTC - Troy Federal St Linkage\Working\Traffic\Analysis\SIDRA\20220406_Federal-6th_121357.sip9 **♥** Site: 101 [Federal Street/River Street Noon Peak -EBL-WBL-NBR-SBR - FINAL - Single Lane (Site Folder: Noon Peak -2025)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200 Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout | Lane Use | and P | erfor | mance | | | | | | | | | | | | | |---------------------|-----------------------|--------|--------------------|-----|-------|--------------|---------------|----------------|---------------------|------------------------|------|----------------|----------------|------------------|-----| | | Dem
Flov
[Total | ws | Arrival
[Total | | Сар. | Deg.
Satn | Lane
Util. | Aver.
Delay | Level of
Service | 50% Ba
Que
[Veh | | Lane
Config | Lane
Length | Cap. P
Adj. B | | | | veh/h | % | veh/h | % | veh/h | v/c | % | sec | | | ft | | ft | % | % | | South: Riv | er Stree | t NB | | | | | | | | | | | | | | | Lane 1 ^d | 526 | 2.5 | 526 | 2.5 | 810 | 0.649 | 100 | 9.7 | LOSA | 2.1 | 54.2 | Full | 200 | 0.0 | 0.0 | | Approach | 526 | 2.5 | 526 | 2.5 | | 0.649 | | 9.7 | LOSA | 2.1 | 54.2 | | | | | | East: Fede | ral Stre | et. WE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 403 | 2.7 | 403 | 2.7 | 738 | 0.546 | 100 | 9.9 | LOSA | 1.4 | 36.0 | Full | 300 | 0.0 | 0.0 | | Approach | 403 | 2.7 | 403 | 2.7 | | 0.546 | | 9.9 | LOS A | 1.4 | 36.0 | | | | | | North: Rive | er Stree | t SB | | | | | | | | | | | | | | | Lane 1 ^d | 501 | 2.1 | 501 | 2.1 | 820 | 0.611 | 100 | 8.9 | LOSA | 1.9 | 47.6 | Full | 300 | 0.0 | 0.0 | | Approach | 501 | 2.1 | 501 | 2.1 | | 0.611 | | 8.9 | LOS A | 1.9 | 47.6 | | | | | | West: Fed | eral Stre | et EE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 565 | 0.7 | 565 | 0.7 | 812 | 0.696 | 100 | 10.8 | LOS B | 2.5 | 63.6 | Full | 350 | 0.0 | 0.0 | | Approach | 565 | 0.7 | 565 | 0.7 | | 0.696 | | 10.8 | LOS B | 2.5 | 63.6 | | | | | | All
Vehicles | 1995 | 1.9 | 1995 | 1.9 | | 0.696 | | 9.9 | LOSA | 2.5 | 63.6 | | | | | Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included). Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap. Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Approach La | ane Fl | ows (v | eh/h) | | | | | | | | |----------------------------|---------|---------|---------|---------|-------|-----|---------------|---------------------|-----------------------------------|------| | South: River S | treet 1 | NΒ | | | | | | | | | | Mov.
From S
To Exit: | U
S | L2
W | T1
N | R2
E | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | Lane Prob.
Util. SL Ov.
% % | Lane | | Lane 1 | 1 | 124 | 263 | 138 | 526 | 2.5 | 810 | 0.649 | 100 NA | NA | | Approach | 1 | 124 | 263 | 138 | 526 | 2.5 | | 0.649 | | | | East: Federal | Street. | WB | | | | | | | | | | Mov.
From E
To Exit: | U | L2
S | T1
W | R2
N | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | Lane Prob.
Util. SL Ov.
% % | Lane | | Lane 1 | 14 | 127 | 201 | 61 | 403 | 2.7 | 738 | 0.546 | 100 | NA | NA | | |----------------------------|-----------|---------|---------|---------|-------|-----|---------------|---------------------|-----|----------------------|--------------------|--| | Approach | 14 | 127 | 201 | 61 | 403 | 2.7 | | 0.546 | | | | | | North: River | Street S | SB | | | | | | | | | | | | Mov.
From N | U | L2 | T1 | R2 | Total | %HV | Cap. | Deg.
Satn | | Prob.
SL Ov. | Ov.
Lane | | | To Exit: | Ν | Е | S | W | | | veh/h | v/c | % | % | No. | | | Lane 1 | 33 | 39 | 277 | 152 | 501 | 2.1 | 820 | 0.611 | 100 | NA | NA | | | Approach | 33 | 39 | 277 | 152 | 501 | 2.1 | | 0.611 | | | | | | West: Federa | al Street | EB | | | | | | | | | | | | Mov.
From W
To Exit: | U
W | L2
N |
T1
E | R2
S | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | | Prob.
SL Ov.
% | Ov.
Lane
No. | | | Lane 1 | 1 | 140 | 254 | 170 | 565 | 0.7 | 812 | 0.696 | 100 | NA | NA | | | Approach | 1 | 140 | 254 | 170 | 565 | 0.7 | | 0.696 | | | | | | | Total | %HV E | eg.Sat | n (v/c) | | | | | | | | | | All Vehicles | 1995 | 1.9 | | 0.696 | | | | | | | | | Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Merge Analysis | | | | | | | | | |------------------------------|-------------|------------------------|----------|-------------------|---------|--------|-------|-------| | Exit | Short P | Percent Opposing | Critical | Follow-up Lane Ca | apacity | Deg. | Min. | Merge | | Lane | Lane O | png in Flow Rate | Gap | Headway Flow | | Satn [| Delay | Delay | | Number | Length | Lane | | Rate | | | | | | | ft | % veh/h pcu/h | sec | sec veh/h | veh/h | v/c | sec | sec | | There are no Exit Short Land | es for Merg | ge Analysis at this Si | te. | | | | | | | Variable Deman | nd Analysis | | | | |---------------------|-----------------------------|------------------------------|--|----------------------------| | | Initial
Queued
Demand | Residual
Queued
Demand | Time for
Residual
Demand
to Clear | Duration
of
Oversatn | | | veh | veh | sec | sec | | South: River Street | et NB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | East: Federal Stre | et. WB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | North: River Stree | t SB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | West: Federal Stre | eet EB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Licence: PLUS / 1PC | Processed: Monday, January 9, 2023 1:15:06 PM Project: N:\Projects\2021\121-357 CDTC - Troy Federal St Linkage\Working\Traffic\Analysis\SIDRA\20220830_Federal-River Final_121357.sip9 **♥** Site: 101 [Federal Street/River Street PM Peak -EBL-WBL-NBR-SBR FINAL - Single Lane (Site Folder: PM Peak - 2025)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200 Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout | Lane Use | and P | erfor | mance | | | | | | | | | | | | | |---------------------|-----------------------|--------|---------|-----|-------|--------------|---------------|----------------|---------------------|-----------------------|-------|----------------|----------------|------------------|------------------| | | Dem
Flo
[Total | ws | Arrival | | Сар. | Deg.
Satn | Lane
Util. | Aver.
Delay | Level of
Service | 50% B
Que
[Veh | | Lane
Config | Lane
Length | Cap. F
Adj. B | | | | veh/h | % | veh/h | % | veh/h | v/c | % | sec | | , | ft | | ft | % | % | | South: Riv | er Stree | t NB | | | | | | | | | | | | | | | Lane 1 ^d | 550 | 4.3 | 550 | 4.3 | 667 | 0.824 | 100 | 17.0 | LOS B | 3.5 | 89.8 | Full | 200 | 0.0 | <mark>8.3</mark> | | Approach | 550 | 4.3 | 550 | 4.3 | | 0.824 | | 17.0 | LOS B | 3.5 | 89.8 | | | | | | East: Fede | eral Stre | et. WE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 477 | 2.9 | 477 | 2.9 | 710 | 0.671 | 100 | 12.2 | LOS B | 2.1 | 53.7 | Full | 300 | 0.0 | 0.0 | | Approach | 477 | 2.9 | 477 | 2.9 | | 0.671 | | 12.2 | LOS B | 2.1 | 53.7 | | | | | | North: Rive | er Stree | t SB | | | | | | | | | | | | | | | Lane 1 ^d | 588 | 2.3 | 588 | 2.3 | 726 | 0.811 | 100 | 14.9 | LOS B | 3.5 | 90.2 | Full | 300 | 0.0 | 0.0 | | Approach | 588 | 2.3 | 588 | 2.3 | | 0.811 | | 14.9 | LOS B | 3.5 | 90.2 | | | | | | West: Fed | eral Stre | et EE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 864 | 1.0 | 864 | 1.0 | 758 | 1.140 | 100 | 82.6 | LOS F | 19.5 | 490.3 | Full | 350 | 0.0 1 | 00.0 | | Approach | 864 | 1.0 | 864 | 1.0 | | 1.140 | | 82.6 | LOS F | 19.5 | 490.3 | | | | | | All
Vehicles | 2479 | 2.4 | 2479 | 2.4 | | 1.140 | | 38.4 | LOS D | 19.5 | 490.3 | | | | | Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included). Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap. Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Approach La | ane Fl | ows (v | eh/h) | | | | | | | | | |----------------------------|---------|---------|---------|---------|-------|-----|---------------|---------------------|--------------------------|-------|-------------------| | South: River S | treet 1 | ΝB | | | | | | | | | | | Mov.
From S
To Exit: | U
S | L2
W | T1
N | R2
E | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | Lane Pr
Util. SL
% | Ov. L | Ov.
ane
No. | | Lane 1 | 1 | 135 | 256 | 157 | 550 | 4.3 | 667 | 0.824 | 100 | NA N | NA | | Approach | 1 | 135 | 256 | 157 | 550 | 4.3 | | 0.824 | | | | | East: Federal | Street. | WB | | | | | | | | | | | Mov.
From E
To Exit: | U | L2
S | T1
W | R2
N | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | Lane Pr
Util. SL
% | Ov. L | Ov.
ane
No. | | Lane 1 | 7 | 161 | 277 | 32 | 477 | 2.9 | 710 | 0.671 | 100 | NA | NA | | |--------------|-----------|-------|--------|---------|-------|-----|---------------|-------------|--------------|-------------|-------------|--| | Approach | 7 | 161 | 277 | 32 | 477 | 2.9 | | 0.671 | | | | | | North: River | Street S | SB | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | | Prob. | Ov. | | | From N | | | | | | | Cap.
veh/h | Satn
v/c | Util. S
% | SL Ov.
% | Lane
No. | | | To Exit: | N | Е | S | W | | | VEII/II | V/C | 70 | 70 | INU. | | | Lane 1 | 16 | 47 | 322 | 203 | 588 | 2.3 | 726 | 0.811 | 100 | NA | NA | | | Approach | 16 | 47 | 322 | 203 | 588 | 2.3 | | 0.811 | | | | | | West: Federa | al Street | EB | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | Lane | | Ov. | | | From W | | | | | | | Cap. | Satn | | SL Ov. | Lane | | | To Exit: | W | N | Е | S | | | veh/h | v/c | % | % | No. | | | Lane 1 | 1 | 204 | 441 | 217 | 864 | 1.0 | 758 | 1.140 | 100 | NA | NA | | | Approach | 1 | 204 | 441 | 217 | 864 | 1.0 | | 1.140 | | | | | | | Total | %HV [| eg.Sat | n (v/c) | | | | | | | | | | All Vehicles | 2479 | 2.4 | | 1.140 | | | | | | | | | Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Merge Analysis | | | | | | | | | |------------------------------|-------------|------------------------|----------|-------------------|---------|--------|-------|-------| | Exit | Short P | Percent Opposing | Critical | Follow-up Lane Ca | apacity | Deg. | Min. | Merge | | Lane | Lane O | png in Flow Rate | Gap | Headway Flow | | Satn [| Delay | Delay | | Number | Length | Lane | | Rate | | | | | | | ft | % veh/h pcu/h | sec | sec veh/h | veh/h | v/c | sec | sec | | There are no Exit Short Land | es for Merg | ge Analysis at this Si | te. | | | | | | | Variable Demand | l Analysis | | | | |---------------------|-----------------------------|------------------------------|--|----------------------------| | | Initial
Queued
Demand | Residual
Queued
Demand | Time for
Residual
Demand
to Clear | Duration
of
Oversatn | | | veh | veh | sec | sec | | South: River Street | NB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | East: Federal Stree | t. WB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | North: River Street | SB | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | West: Federal Stree | et EB | | | | | Lane 1 | 0.0 | 26.6 | 126.3 | NA | SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Licence: PLUS / 1PC | Processed: Monday, January 9, 2023 1:10:18 PM Project: N:\Projects\2021\121-357 CDTC - Troy Federal St Linkage\Working\Traffic\Analysis\SIDRA\20220830_Federal-River Final_121357.sip9 W Site: 101 [Federal Street/River Street PM Peak -EBL-WBL-NBR-SBR-FINAL - Single Lane (Site Folder: PM Peak - 2045)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200 Federal Street/River Street ETC+20 2045 PM Peak Site Category: (None) Roundabout | Lane Use | and P | erfor | mance | | | | | | | | | | | | | |---------------------|---------------|----------|------------------|----------|-------|--------------|---------------|-------|---------------------|-------|--------------|----------------|----------------|------------------|-------------------| | | Dem
Flo | | Arrival | | Сар. | Deg.
Satn | Lane
Util. | | Level of
Service | Qu | | Lane
Config | Lane
Length | Cap. F
Adj. E | Prob.
Block. | | | [Total veh/h | HV]
% | [Total
veh/h | HV]
% | veh/h | v/c | % | sec | | [Veh | Dist]
ft | | ft | % | % | | South: Riv | er Stree | t NB | | | | | | | | | | | | | | | Lane 1 ^d | 620 | 4.3 | 620 | 4.3 | 691 | 0.898 | 100 | 21.3 | LOS C | 5.0 | 128.8 | Full | 200 | 0.0 | <mark>21.3</mark> | | Approach | 620 | 4.3 | 620 | 4.3 | | 0.898 | | 21.3 | LOS C | 5.0 | 128.8 | | | | | |
East: Fede | ral Stre | et. WE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 537 | 2.9 | 537 | 2.9 | 685 | 0.784 | 100 | 15.8 | LOS B | 3.1 | 78.3 | Full | 300 | 0.0 | 0.0 | | Approach | 537 | 2.9 | 537 | 2.9 | | 0.784 | | 15.8 | LOS B | 3.1 | 78.3 | | | | | | North: Rive | er Stree | t SB | | | | | | | | | | | | | | | Lane 1 ^d | 664 | 2.3 | 664 | 2.3 | 672 | 0.988 | 100 | 34.8 | LOS C | 8.0 | 203.1 | Full | 300 | 0.0 | <mark>23.5</mark> | | Approach | 664 | 2.3 | 664 | 2.3 | | 0.988 | | 34.8 | LOS C | 8.0 | 203.1 | | | | | | West: Fed | eral Stre | eet EE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 973 | 1.0 | 973 | 1.0 | 702 | 1.386 | 100 | 188.5 | LOS F | 38.2 | 962.8 | Full | 350 | 0.0 | 100.0 | | Approach | 973 | 1.0 | 973 | 1.0 | | 1.386 | | 188.5 | LOS F | 38.2 | 962.8 | | | | | | All
Vehicles | 2795 | 2.4 | 2795 | 2.4 | | 1.386 | | 81.7 | LOS F | 38.2 | 962.8 | | | | | Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included). Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap. Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Approach La | ane Fl | ows (v | eh/h) | | | | | | | | |----------------------------|---------|---------|---------|---------|-------|-----|---------------|---------------------|-----------------------------------|------| | South: River S | treet 1 | ΝB | | | | | | | | | | Mov.
From S
To Exit: | U
S | L2
W | T1
N | R2
E | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | Lane Prob.
Util. SL Ov.
% | Lane | | Lane 1 | 1 | 152 | 289 | 178 | 620 | 4.3 | 691 | 0.898 | 100 NA | NA | | Approach | 1 | 152 | 289 | 178 | 620 | 4.3 | | 0.898 | | | | East: Federal S | Street. | WB | | | | | | | | | | Mov.
From E
To Exit: | U | L2 | T1
W | R2
N | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | Lane Prob.
Util. SL Ov.
% % | Lane | | Lane 1 | 9 | 181 | 312 | 36 | 537 | 2.9 | 685 | 0.784 | 100 | NA | NA | | | |------------------------|-------------------------|-------|---------|---------|-------|-----|---------------|--------------|---------|-----------------|-------------|--|--| | Approach | 9 | 181 | 312 | 36 | 537 | 2.9 | | 0.784 | | | | | | | North: River Street SB | | | | | | | | | | | | | | | Mov. | U | L2 | T1 | R2 | Total | %HV | | Deg. | | Prob. | Ov. | | | | From N
To Exit: | N | Е | S | W | | | Cap.
veh/h | Satn
v/c | Util. 3 | SL Ov.
% | Lane
No. | | | | Lane 1 | 18 | 53 | 364 | 229 | 664 | 2.3 | 672 | 0.988 | 100 | NA | NA | | | | Approach | 18 | 53 | 364 | 229 | 664 | 2.3 | | 0.988 | | | | | | | West: Federa | West: Federal Street EB | | | | | | | | | | | | | | Mov.
From W | U | L2 | T1 | R2 | Total | %HV | Сар. | Deg.
Satn | Util. | Prob.
SL Ov. | Ov.
Lane | | | | To Exit: | W | Ν | Е | S | | | veh/h | v/c | % | % | No. | | | | Lane 1 | 1 | 230 | 498 | 245 | 973 | 1.0 | 702 | 1.386 | 100 | NA | NA | | | | Approach | 1 | 230 | 498 | 245 | 973 | 1.0 | | 1.386 | | | | | | | | Total | %HV [| eg.Satı | n (v/c) | | | | | | | | | | | All Vehicles | 2795 | 2.4 | | 1.386 | | | | | | | | | | Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Merge Analysis | | | | | | | | | |------------------------------|-----------|--------------------------|----------|-------------------|---------|--------|-------|-------| | Exit | Short | Percent Opposing | Critical | Follow-up Lane Ca | apacity | Deg. | Min. | Merge | | Lane | Lane | Opng in Flow Rate | Gap | Headway Flow | | Satn I | Delay | Delay | | Number | Length | Lane | | Rate | | | | · | | | ft | % veh/h pcu/h | sec | sec veh/h | veh/h | v/c | sec | sec | | There are no Exit Short Land | es for Me | erge Analysis at this Si | te. | | | | | | | Variable Dema | nd Analysis | | | | | | | | | | |-------------------------|-----------------------------|------------------------------|--|----------------------------|--|--|--|--|--|--| | | Initial
Queued
Demand | Residual
Queued
Demand | Time for
Residual
Demand
to Clear | Duration
of
Oversatn | | | | | | | | | veh | veh | sec | sec | | | | | | | | South: River Stre | eet NB | | | | | | | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | East: Federal Str | reet. WB | | | | | | | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | North: River Stre | et SB | | | | | | | | | | | Lane 1 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | West: Federal Street EB | | | | | | | | | | | | Lane 1 | 0.0 | 67.8 | 347.7 | NA | | | | | | | SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Licence: PLUS / 1PC | Processed: Monday, January 9, 2023 1:12:28 PM Project: N:\Projects\2021\121-357 CDTC - Troy Federal St Linkage\Working\Traffic\Analysis\SIDRA\20220830_Federal-River Final_121357.sip9 **♥** Site: 101 [Federal Street/River Street Noon Peak -EBL-WBL-NBR-SBR-FINAL - Single Lane (Site Folder: Noon Peak - 2045)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200 Federal Street/River Street Existing 2022 PM Peak Site Category: (None) Roundabout | Lane Use | and P | erfor | mance | | | | | | | | | | | | | |---------------------|-----------------------|-----------|--------------------|--------------|-------|--------------|---------------|-------|---------------------|------------------------|---------------|----------------|----------------------|------------------|------------------| | | Dem
Flo
[Total | and
ws | Arrival
[Total | Flows
HV] | Cap. | Deg.
Satn | Lane
Util. | Delay | Level of
Service | 50% Ba
Que
[Veh | eue
Dist] | Lane
Config | Lane
Length
ft | Cap. F
Adj. B | | | South: Riv | veh/h
er Stree | | veh/h | % | veh/h | v/c | % | sec | _ | | ft | _ | 11 | % | . % | | Lane 1 ^d | 592 | 2.5 | 592 | 2.5 | 760 | 0.779 | 100 | 13.5 | LOS B | 3.2 | 82.9 | Full | 200 | 0.0 | <mark>5.9</mark> | | Approach | 592 | 2.5 | 592 | 2.5 | | 0.779 | | 13.5 | LOS B | 3.2 | 82.9 | | | | | | East: Fede | eral Stre | et. WE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 455 | 2.7 | 455 | 2.7 | 684 | 0.665 | 100 | 12.6 | LOS B | 2.0 | 51.3 | Full | 300 | 0.0 | 0.0 | | Approach | 455 | 2.7 | 455 | 2.7 | | 0.665 | | 12.6 | LOS B | 2.0 | 51.3 | | | | | | North: Riv | er Stree | t SB | | | | | | | | | | | | | | | Lane 1 ^d | 565 | 2.1 | 565 | 2.1 | 769 | 0.734 | 100 | 11.9 | LOS B | 2.8 | 70.7 | Full | 300 | 0.0 | 0.0 | | Approach | 565 | 2.1 | 565 | 2.1 | | 0.734 | | 11.9 | LOS B | 2.8 | 70.7 | | | | | | West: Fed | eral Stre | eet EE | 3 | | | | | | | | | | | | | | Lane 1 ^d | 636 | 0.7 | 636 | 0.7 | 759 | 0.838 | 100 | 16.3 | LOS B | 4.1 | 103.9 | Full | 350 | 0.0 | 0.0 | | Approach | 636 | 0.7 | 636 | 0.7 | | 0.838 | | 16.3 | LOS B | 4.1 | 103.9 | | | | | | All
Vehicles | 2247 | 1.9 | 2247 | 1.9 | | 0.838 | | 13.7 | LOS B | 4.1 | 103.9 | | | | | Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Signalised Intersections. Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included). Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap. Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model. HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Approach La | Approach Lane Flows (veh/h) | | | | | | | | | | | | |----------------------------|-----------------------------|---------|---------|---------|-------|-----|---------------|---------------------|-----------------------------------|------|--|--| | South: River S | South: River Street NB | | | | | | | | | | | | | Mov.
From S
To Exit: | U
S | L2
W | T1
N | R2
E | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | Lane Prob.
Util. SL Ov.
% % | Lane | | | | Lane 1 | 1 | 139 | 296 | 156 | 592 | 2.5 | 760 | 0.779 | 100 NA | NA | | | | Approach | 1 | 139 | 296 | 156 | 592 | 2.5 | | 0.779 | | | | | | East: Federal | Street. | WB | | | | | | | | | | | | Mov.
From E | U | L2 | T1 | R2 | Total | %HV | Cap. | Deg.
Satn | Lane Prob.
Util. SL Ov. | Lane | | | | To Exit: | Е | S | W | N | | | veh/h | v/c | % % | No. | | | | Lane 1 | 16 | 143 | 227 | 68 | 455 | 2.7 | 684 | 0.665 | 100 | NA | NA | | |----------------------------|-------------------------|---------|---------|---------|-------|-----|---------------|---------------------|-----|----------------------|--------------------|--| |
Approach | 16 | 143 | 227 | 68 | 455 | 2.7 | | 0.665 | | | | | | North: River | North: River Street SB | | | | | | | | | | | | | Mov.
From N | U | L2 | T1 | R2 | Total | %HV | Сар. | Deg.
Satn | | Prob.
SL Ov. | Ov.
Lane | | | To Exit: | Ν | Ε | S | W | | | veh/h | v/c | % | % | No. | | | Lane 1 | 37 | 44 | 312 | 171 | 565 | 2.1 | 769 | 0.734 | 100 | NA | NA | | | Approach | 37 | 44 | 312 | 171 | 565 | 2.1 | | 0.734 | | | | | | West: Federa | West: Federal Street EB | | | | | | | | | | | | | Mov.
From W
To Exit: | U
W | L2
N | T1
E | R2
S | Total | %HV | Cap.
veh/h | Deg.
Satn
v/c | | Prob.
SL Ov.
% | Ov.
Lane
No. | | | Lane 1 | 1 | 158 | 286 | 192 | 636 | 0.7 | 759 | 0.838 | 100 | NA | NA | | | Approach | 1 | 158 | 286 | 192 | 636 | 0.7 | | 0.838 | | | | | | | Total | %HV [| eg.Satr | n (v/c) | | | | | | | | | | All Vehicles | 2247 | 1.9 | | 0.838 | | | | | | | | | Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects. | Merge Analysis | | | | | | | | | |-----------------------------|-----------|--------------------------|----------|---------------------|---------|--------|-------|-------| | Exit | Short | Percent Opposing | Critical | Follow-up Lane Capa | acity [| Deg. | Min. | Merge | | Lane | Lane | Opng in Flow Rate | Gap | Headway Flow | | Satn [| Delay | Delay | | Number | Length | Lane | | Rate | | | | | | | ft | % veh/h pcu/h | sec | sec veh/h ve | eh/h | v/c | sec | sec | | There are no Exit Short Lan | es for Me | erge Analysis at this Si | te. | | | | | | | Initial Residual Time for Duration Queued Queued Residual of Demand Demand Demand to Clear Veh Veh Sec Sec South: River Street NB Lane 1 0.0 | | | | | | | | | | |--|--|--|--|--|--|--|--|--|--| | veh veh sec sec South: River Street NB | Lane 1 0.0 0.0 0.0 0.0 | | | | | | | | | | | Lane 1 0.0 0.0 0.0 0.0 | | | | | | | | | | | East: Federal Street. WB | | | | | | | | | | | Lane 1 0.0 0.0 0.0 0.0 | | | | | | | | | | | North: River Street SB | | | | | | | | | | | Lane 1 0.0 0.0 0.0 0.0 | | | | | | | | | | | West: Federal Street EB | | | | | | | | | | | Lane 1 0.0 0.0 0.0 0.0 | | | | | | | | | | SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Licence: PLUS / 1PC | Processed: Monday, January 9, 2023 1:13:29 PM Project: N:\Projects\2021\121-357 CDTC - Troy Federal St Linkage\Working\Traffic\Analysis\SIDRA\20220830_Federal-River Final_121357.sip9 Appendix E **Cost Estimates** | Calculated By: | |------------------| | Calculated Date: | | Checked By: | | Checked Date: | Acres ### **Federal Street Improvements** October 20, 2022 ## **Description of Major Improvements:** Construction of 2 roundabouts: One at Route 4/Federal St. and one at 6th Ave/Federal St. Construction of roadway improvements including raised median between the 2 roundabouts Construction of two-way separated bike lane | Approximate ROW required: | TE | 0 | 0.0000 | Acres | |--|----------------|--------------|---------------|--------------| | ITEM DESCRIPTION | UNITS | PRICE | QUANTITY | TOTAL | | UNCLASSIFIED EXCAVATION AND DISPOSAL | CY | \$32.00 | 10100 | \$323,200 | | EMBANKMENT IN PLACE | CY | \$40.00 | 1500 | \$60,000 | | FULL DEPTH PAVEMENT AND SUBBASE | SF | \$8.75 | 97745 | \$855,269 | | GRANITE CURB | LF | \$42.00 | 9200 | \$386,400 | | RAISED MEDIANS | SF | \$12.50 | 25055 | \$313,188 | | ROUNDABOUT TRUCK APRON | SF | \$17.50 | 6435 | \$112,613 | | CONCRETE SIDEWALKS | SF | \$11.50 | 29465 | \$338,848 | | MSES WALLS | SF | \$72.00 | 1200 | \$86,400 | | DRAINAGE BASINS | EA | \$7,500.00 | 20 | \$150,000 | | DRAINAGE PIPE | LF | \$90.00 | 1500 | \$135,000 | | DECORATIVE LIGHTING | LS | \$200,000.00 | 1 | \$200,000 | | LANDSCAPING (INCLUDING TOPSOIL AND SEED) | LS | \$65,000.00 | 1 | \$65,000 | | SIGNING AND STRIPING | LS | \$30,000.00 | 1 | \$30,000 | | STORMWATER MANAGEMENT (\$25,000 /acre) | AC | \$25,000.00 | 3.00 | \$75,000 | | EROSION CONTROL | LS | \$15,000.00 | 1 | \$15,000 | | WORK ZONE TRAFFIC CONTROL | LS | 12% | 1 | \$377,600 | | SURVEY AND STAKEOUT | LS | 3% | 1 | \$94,400 | | MOBILIZATION | LS | 4% | 1 | \$125,900 | | CONTINGENCY | LS | 20% | 1 | \$629,200 | | | _ , | CONSTRUCT | ION SUBTOTAL: | \$ 4,374,000 | FEE 18620 SF 0.4275 DESIGN ENGINEERING (14%) \$ 612,400 CONSTRUCTION INSPECTION (15%) \$ 656,100 ANTICIPATED ROW COST \$ 149,610 PROJECT TOTAL: \$ 5,793,000 10/20/2022 Conceptual Estimate Page 1 of 1